{"id":166419,"date":"2012-01-01T00:00:00","date_gmt":"2012-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/the-scale-of-edges\/"},"modified":"2018-10-16T20:17:06","modified_gmt":"2018-10-17T03:17:06","slug":"the-scale-of-edges","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-scale-of-edges\/","title":{"rendered":"The Scale of Edges"},"content":{"rendered":"
Although the scale of isotropic visual elements such as blobs and interest points, e.g. SIFT[12], has been well studied and adopted in various applications, how to determine the scale of anisotropic elements such as edges is still an open problem. In this paper, we study the scale of edges, and try to answer two questions: 1) what is the scale of edges, and 2) how to calculate it. From the points of human cognition and physical interpretation, we illustrate the existence of the scale of edges and provide a quantitative definition. Then, an automatic edge scale selection approach is proposed. Finally, a cognitive experiment is conducted to validate the rationality of the detected scales. Moreover, the\u00a0importance of identifying the scale of edges is also shown in applications such as boundary detection and hierarchical edge parsing.<\/p>\n","protected":false},"excerpt":{"rendered":"
Although the scale of isotropic visual elements such as blobs and interest points, e.g. SIFT[12], has been well studied and adopted in various applications, how to determine the scale of anisotropic elements such as edges is still an open problem. In this paper, we study the scale of edges, and try to answer two questions: […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-166419","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)","msr_edition":"","msr_affiliation":"","msr_published_date":"2012-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"267705","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"18-2012-cvpr-The-Scale-of-Edges","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2012\/01\/18-2012-cvpr-The-Scale-of-Edges.pdf","id":267705,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Xianming Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chw","user_id":31440,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chw"},{"type":"text","value":"Hongxun Yao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"leizhang","user_id":32641,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=leizhang"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170517],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170517,"post_title":"MindFinder: Finding Images by Sketching","post_name":"mindfinder-finding-images-by-sketching","post_type":"msr-project","post_date":"2015-08-12 20:04:39","post_modified":"2017-05-31 11:14:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindfinder-finding-images-by-sketching\/","post_excerpt":"Sketch-based image search is a well-known and difficult problem, in which little progress has been made in the past decade in developing a large-scale and practical sketch-based search engine. We have revisited this problem and developed a scalable solution to sketch-based image search. The MindFinder system has been built by indexing more than 1.5 billion web images to enable efficient sketch-based image retrieval, and many creative applications can be expected to advance the state of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170517"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166419"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166419\/revisions"}],"predecessor-version":[{"id":525875,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166419\/revisions\/525875"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=166419"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=166419"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=166419"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=166419"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=166419"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=166419"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=166419"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=166419"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=166419"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=166419"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=166419"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=166419"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=166419"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=166419"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=166419"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=166419"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}