{"id":166489,"date":"2014-06-01T00:00:00","date_gmt":"2014-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/aggregating-ordinal-labels-from-crowds-by-minimax-conditional-entropy\/"},"modified":"2018-10-16T20:19:16","modified_gmt":"2018-10-17T03:19:16","slug":"aggregating-ordinal-labels-from-crowds-by-minimax-conditional-entropy","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/aggregating-ordinal-labels-from-crowds-by-minimax-conditional-entropy\/","title":{"rendered":"Aggregating Ordinal Labels from Crowds by Minimax Conditional Entropy"},"content":{"rendered":"
\n

We propose a method to aggregate noisy ordinal labels collected from a crowd of workers or annotators. Eliciting ordinal labels is important in tasks such as judging web search quality and rating products. Our method is motivated by the observation that workers usually have difficulty distinguishing between two adjacent ordinal classes whereas distinguishing between two classes which are far away from each other is much easier. We formulate our method as minimax conditional entropy subject to constraints which encode this observation. Empirical evaluations on real datasets demonstrate significant improvements over existing methods.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We propose a method to aggregate noisy ordinal labels collected from a crowd of workers or annotators. Eliciting ordinal labels is important in tasks such as judging web search quality and rating products. Our method is motivated by the observation that workers usually have difficulty distinguishing between two adjacent ordinal classes whereas distinguishing between two […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-166489","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 31st International Conference on Machine Learning (ICML)","msr_affiliation":"","msr_published_date":"2014-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proceedings of the 31st International Conference on Machine Learning (ICML)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204857","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ordinal-crowd.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ordinal-crowd.pdf","id":204857,"label_id":0},{"type":"file","title":"Aggregating-Ordinal-Labels-from-Crowds-Slides","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2014\/06\/Aggregating-Ordinal-Labels-from-Crowds.pdf","id":353663,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":353663,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2014\/06\/Aggregating-Ordinal-Labels-from-Crowds.pdf"},{"id":204857,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ordinal-crowd.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"denzho","user_id":31609,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=denzho"},{"type":"text","value":"Qiang Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"jplatt","user_id":32416,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jplatt"},{"type":"user_nicename","value":"meek","user_id":32868,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=meek"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144941],"msr_project":[171217],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171217,"post_title":"Algorithmic Crowdsourcing","post_name":"algorithmic-crowdsourcing","post_type":"msr-project","post_date":"2013-09-26 15:40:30","post_modified":"2019-08-19 14:35:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/algorithmic-crowdsourcing\/","post_excerpt":"To build a machine learning based intelligent system, we often need to collect training labels and feed them into the system. A useful lesson in machine learning is that \"more data beats a clever algorithm\". In the current days, through a commercial crowdsourcing platform, we can easily collect a large amount of labels at a cost of pennies per label. However, the labels obtained from crowdsourcing may be highly noisy. Training a machine learning model…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171217"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166489"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166489\/revisions"}],"predecessor-version":[{"id":526569,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166489\/revisions\/526569"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=166489"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=166489"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=166489"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=166489"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=166489"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=166489"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=166489"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=166489"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=166489"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=166489"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=166489"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=166489"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=166489"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=166489"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=166489"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=166489"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}