{"id":166513,"date":"2014-06-01T00:00:00","date_gmt":"2014-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/semantic-parsing-for-single-relation-question-answering\/"},"modified":"2018-10-16T20:20:06","modified_gmt":"2018-10-17T03:20:06","slug":"semantic-parsing-for-single-relation-question-answering","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/semantic-parsing-for-single-relation-question-answering\/","title":{"rendered":"Semantic Parsing for Single-Relation Question Answering"},"content":{"rendered":"
We develop a semantic parsing framework based on semantic similarity for open domain question answering (QA). We focus on single-relation questions and decompose each question into an entity mention and a relation pattern. Using convolutional neural network models, we measure the similarity of entity mentions with entities in the knowledge base (KB) and the similarity of relation patterns and relations in the KB. We score relational triples in the KB using these measures and select the top scoring relational triple to answer the question. When evaluated on an open-domain QA task, our method achieves higher precision across different recall points compared to the previous approach, and can improve F1 by 7 points.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
We develop a semantic parsing framework based on semantic similarity for open domain question answering (QA). We focus on single-relation questions and decompose each question into an entity mention and a relation pattern. Using convolutional neural network models, we measure the similarity of entity mentions with entities in the knowledge base (KB) and the similarity […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-166513","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"Proceedings of ACL","msr_affiliation":"","msr_published_date":"2014-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204872","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"SingleRelationQA-YihHeMeek-ACL14.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/SingleRelationQA-YihHeMeek-ACL14.pdf","id":204872,"label_id":0},{"type":"file","title":"ACL-14%20Single-Relation%20QA%20v2.pptx","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACL-1420Single-Relation20QA20v2.pptx","id":204874,"label_id":0},{"type":"file","title":"ACL-14-SRQA-Poster.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACL-14-SRQA-Poster.pdf","id":204873,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":204874,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACL-1420Single-Relation20QA20v2.pptx"},{"id":204873,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ACL-14-SRQA-Poster.pdf"},{"id":204872,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/SingleRelationQA-YihHeMeek-ACL14.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"scottyih","user_id":33556,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=scottyih"},{"type":"user_nicename","value":"xiaohe","user_id":34880,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=xiaohe"},{"type":"user_nicename","value":"meek","user_id":32868,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=meek"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144931],"msr_project":[171429],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171429,"post_title":"DSSM","post_name":"dssm","post_type":"msr-project","post_date":"2015-01-30 16:49:10","post_modified":"2019-08-19 10:45:32","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/dssm\/","post_excerpt":"The goal of this project is to develop a class of deep\u00a0representation learning models. DSSM stands for Deep Structured Semantic Model, or more general, Deep Semantic Similarity Model. DSSM, developed by the MSR Deep Learning Technology Center(DLTC), is a deep neural network (DNN) modeling technique for representing text strings (sentences, queries, predicates, entity mentions, etc.) in a\u00a0continuous semantic space and\u00a0modeling semantic similarity between two text strings (e.g., Sent2Vec). DSSM has wide applications including information retrieval…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171429"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166513"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166513\/revisions"}],"predecessor-version":[{"id":424200,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/166513\/revisions\/424200"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=166513"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=166513"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=166513"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=166513"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=166513"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=166513"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=166513"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=166513"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=166513"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=166513"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=166513"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=166513"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=166513"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=166513"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=166513"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=166513"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}