{"id":167090,"date":"2013-01-01T00:00:00","date_gmt":"2013-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/cost-recovering-bayesian-algorithmic-mechanism-design\/"},"modified":"2018-10-16T21:38:03","modified_gmt":"2018-10-17T04:38:03","slug":"cost-recovering-bayesian-algorithmic-mechanism-design","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/cost-recovering-bayesian-algorithmic-mechanism-design\/","title":{"rendered":"Cost-recovering bayesian algorithmic mechanism design"},"content":{"rendered":"

We study the design of Bayesian incentive compatible mechanisms in single parameter domains, for the objective of optimizing social efficiency as measured by social cost. In the problems we consider, a group of participants compete to receive service from a mechanism that can provide such services at a cost. The mechanism wishes to choose which agents to serve in order to maximize social efficiency, but is not willing to suffer an expected loss: the agents’ payments should cover the cost of service in expectation.<\/p>\n

We develop a general method for converting arbitrary approximation algorithms for the underlying optimization problem into Bayesian incentive compatible mechanisms that are cost-recovering in expectation. In particular, we give polynomial time black-box reductions from the mechanism design problem to the problem of designing a social cost minimization algorithm without incentive constraints. Our reduction increases the expected social cost of the given algorithm by a factor of O(log(min{n, h})), where $n$ is the number of agents and h is the ratio between the highest and lowest nonzero valuations in the support. We also provide a lower bound illustrating that this inflation of the social cost is essential: no BIC cost-recovering mechanism can achieve an approximation factor better than \u03a9(log(n)) or \u03a9(log(h)) in general.<\/p>\n

Our techniques extend to show that a certain class of truthful algorithms can be made cost-recovering in the non-Bayesian setting, in such a way that the approximation factor degrades by at most O(log(min{n, h})). This is an improvement over previously-known constructions with inflation factor O(log n).<\/p>\n","protected":false},"excerpt":{"rendered":"

We study the design of Bayesian incentive compatible mechanisms in single parameter domains, for the objective of optimizing social efficiency as measured by social cost. In the problems we consider, a group of participants compete to receive service from a mechanism that can provide such services at a cost. The mechanism wishes to choose which […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-167090","msr-research-item","type-msr-research-item","status-publish","hentry","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"Proceedings of the fourteenth ACM conference on Electronic commerce","msr_affiliation":"","msr_published_date":"2013-06-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"453\u2013470","msr_chapter":"","msr_isbn":"978-1-4503-1962-1","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"EC '13","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"10.1145\/2482540.2482591","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/10.1145\/2482540.2482591","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/10.1145\/2482540.2482591"}],"msr-author-ordering":[{"type":"user_nicename","value":"brlucier","user_id":31303,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=brlucier"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167090"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167090\/revisions"}],"predecessor-version":[{"id":537580,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167090\/revisions\/537580"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=167090"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=167090"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=167090"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=167090"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=167090"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=167090"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=167090"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=167090"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=167090"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=167090"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=167090"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=167090"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=167090"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=167090"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=167090"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=167090"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}