{"id":167737,"date":"2015-01-11T00:00:00","date_gmt":"2015-01-11T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/rapidly-scaling-dialog-systems-with-interactive-learning\/"},"modified":"2018-10-16T19:55:55","modified_gmt":"2018-10-17T02:55:55","slug":"rapidly-scaling-dialog-systems-with-interactive-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/rapidly-scaling-dialog-systems-with-interactive-learning\/","title":{"rendered":"Rapidly Scaling Dialog Systems with Interactive Learning"},"content":{"rendered":"
\n

In personal assistant dialog systems, intent models are classifiers that identify the intent of a user utterance, such as to add a meeting to a calendar, or get the director of a stated movie. Rapidly adding intents is one of the main bottlenecks to scaling<\/em> \u2014 adding functionality to \u2014 personal assistants. In this paper we show how interactive learning<\/em> can be applied to the creation of statistical intent models. Interactive learning [10] combines model definition, labeling, model building, active learning, model evaluation, and feature engineering in a way that allows a domain expert \u2014 who need not be a machine learning expert \u2014 to build classifiers. We apply interactive learning to build a handful of intent models in three different domains. In controlled lab experiments, we show that intent detectors can be built using interactive learning, and then improved in a novel end-to-end visualization tool. We then applied this method to a publicly deployed personal assistant \u2014 Microsoft Cortana \u2014 where a non-machine learning expert built an intent model in just over two hours, yielding excellent performance in the commercial service.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

In personal assistant dialog systems, intent models are classifiers that identify the intent of a user utterance, such as to add a meeting to a calendar, or get the director of a stated movie. Rapidly adding intents is one of the main bottlenecks to scaling \u2014 adding functionality to \u2014 personal assistants. In this paper […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-167737","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-01-11","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204508","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"iwsds2015.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/iwsds2015.pdf","id":204508,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":204508,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/iwsds2015.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"jawillia","user_id":32190,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jawillia"},{"type":"text","value":"Nobal B. Niraula","user_id":0,"rest_url":false},{"type":"text","value":"Pradeep Dasigi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"aparnar","user_id":31070,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=aparnar"},{"type":"user_nicename","value":"cgarcia","user_id":31363,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=cgarcia"},{"type":"text","value":"Mouni Reddy","user_id":0,"rest_url":false},{"type":"user_nicename","value":"gzweig","user_id":31938,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=gzweig"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144941,390593],"msr_project":[393245,171459,171313],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":393245,"post_title":"Conversational Intelligence","post_name":"conversational-intelligence","post_type":"msr-project","post_date":"2017-07-05 10:01:45","post_modified":"2017-11-15 13:39:25","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/conversational-intelligence\/","post_excerpt":"Intelligent agents that can handle human language play a growing role in personalized, ubiquitous computing and the everyday use of devices. Agents need to be able to communicate and collaborate with humans in ways that are seamless and natural, and to be able to learn new behaviors, concepts, and relationships as first-class operations. In other words, our devices need to be able to converse with us. In this project, Microsoft Research AI teams are interested…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/393245"}]}},{"ID":171459,"post_title":"Platform for Interactive Concept Learning (PICL)","post_name":"platform-for-interactive-concept-learning-picl","post_type":"msr-project","post_date":"2015-04-28 11:12:37","post_modified":"2018-12-03 15:04:35","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/platform-for-interactive-concept-learning-picl\/","post_excerpt":"Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The system leverages big data to find examples that maximize the training value of its interaction with the teacher. Building classifiers and entity extractors is currently an inefficient process involving machine learning experts, developers and labelers. PICL enables teachers with no expertise in…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171459"}]}},{"ID":171313,"post_title":"Dialog and Conversational Systems Research","post_name":"dialog-and-conversational-systems-research","post_type":"msr-project","post_date":"2014-03-14 09:46:35","post_modified":"2017-07-11 15:34:26","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/dialog-and-conversational-systems-research\/","post_excerpt":"Conversational systems interact with people through language to assist, enable, or entertain. Research at Microsoft spans dialogs that use language exclusively, or in conjunctions with additional modalities like gesture; where language is spoken or in text; and in a variety of settings, such as conversational systems in apps or devices, and situated interactions in the real world. Projects Spoken Language Understanding","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171313"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167737","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167737\/revisions"}],"predecessor-version":[{"id":400370,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167737\/revisions\/400370"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=167737"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=167737"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=167737"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=167737"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=167737"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=167737"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=167737"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=167737"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=167737"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=167737"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=167737"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=167737"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=167737"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=167737"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=167737"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=167737"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}