{"id":167925,"date":"2015-04-01T00:00:00","date_gmt":"2015-04-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/accurate-robust-and-flexible-real-time-hand-tracking\/"},"modified":"2018-10-16T20:01:51","modified_gmt":"2018-10-17T03:01:51","slug":"accurate-robust-and-flexible-real-time-hand-tracking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/accurate-robust-and-flexible-real-time-hand-tracking\/","title":{"rendered":"Accurate, Robust, and Flexible Real-time Hand Tracking"},"content":{"rendered":"
\n

We present a new real-time hand tracking system based on a single depth camera. The system can accurately reconstruct complex hand poses across a variety of subjects. It also allows for robust tracking, rapidly recovering from any temporary failures. Most uniquely, our tracker is highly flexible, dramatically improving upon previous approaches which have focused on front-facing close-range scenarios. This flexibility opens up new possibilities for human-computer interaction with examples including tracking at distances from tens of centimeters through to several meters (for controlling the TV at a distance), supporting tracking using a moving depth camera (for mobile scenarios), and arbitrary camera placements (for VR headsets). These features are achieved through a new pipeline that combines a multi-layered discriminative reinitialization strategy for per-frame pose estimation, followed by a generative model-fitting stage. We provide extensive technical details and a detailed qualitative and quantitative analysis.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We present a new real-time hand tracking system based on a single depth camera. The system can accurately reconstruct complex hand poses across a variety of subjects. It also allows for robust tracking, rapidly recovering from any temporary failures. Most uniquely, our tracker is highly flexible, dramatically improving upon previous approaches which have focused on […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-167925","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"CHI '15 Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems","msr_affiliation":"","msr_published_date":"2015-04-18","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"3633-3642","msr_chapter":"","msr_isbn":"978-1-4503-3145-6","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Best of CHI Honorable Mention Award","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204431","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=2702179","msr_doi":"10.1145\/2702123.2702179","msr_publication_uploader":[{"type":"file","title":"pn362-sharp-video.mp4","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp-video.mp4","id":204431,"label_id":0},{"type":"file","title":"pn362-sharp-supplementary.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp-supplementary.pdf","id":204430,"label_id":0},{"type":"file","title":"pn362-sharp.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp.pdf","id":204429,"label_id":0},{"type":"url","title":"http:\/\/dl.acm.org\/citation.cfm?id=2702179","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/2702123.2702179","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=2702179"},{"id":204431,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp-video.mp4"},{"id":204430,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp-supplementary.pdf"},{"id":204429,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/pn362-sharp.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"tsharp","user_id":34344,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tsharp"},{"type":"user_nicename","value":"cemke","user_id":31360,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=cemke"},{"type":"text","value":"Duncan Robertson","user_id":0,"rest_url":false},{"type":"user_nicename","value":"jota","user_id":32403,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jota"},{"type":"user_nicename","value":"jamiesho","user_id":32162,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jamiesho"},{"type":"user_nicename","value":"davidkim","user_id":31563,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=davidkim"},{"type":"user_nicename","value":"chrheman","user_id":31420,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrheman"},{"type":"user_nicename","value":"idol","user_id":32081,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=idol"},{"type":"user_nicename","value":"alvinn","user_id":30965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alvinn"},{"type":"user_nicename","value":"yichenw","user_id":34999,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yichenw"},{"type":"user_nicename","value":"danifree","user_id":31530,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=danifree"},{"type":"user_nicename","value":"eyalk","user_id":31771,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=eyalk"},{"type":"user_nicename","value":"awf","user_id":31157,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=awf"},{"type":"user_nicename","value":"shahrami","user_id":33590,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=shahrami"},{"type":"user_nicename","value":"pkohli","user_id":33269,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=pkohli"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[216334],"msr_project":[171411],"publication":[],"video":[],"download":[234737],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171411,"post_title":"Fully Articulated Hand Tracking","post_name":"fully-articulated-hand-tracking","post_type":"msr-project","post_date":"2014-10-02 20:03:22","post_modified":"2019-05-21 02:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/fully-articulated-hand-tracking\/","post_excerpt":"We present a new real-time articulated hand tracker which can enable new possibilities for human-computer interaction (HCI). Our system accurately reconstructs complex hand poses across a variety of subjects using only a single depth camera. It also allows for a high-degree of robustness, continually recovering from tracking failures. However, the most unique aspect of our tracker is its flexibility in terms of camera placement and operating range.   Screenshots Please note, we are using a…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171411"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167925"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167925\/revisions"}],"predecessor-version":[{"id":519193,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/167925\/revisions\/519193"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=167925"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=167925"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=167925"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=167925"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=167925"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=167925"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=167925"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=167925"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=167925"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=167925"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=167925"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=167925"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=167925"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=167925"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=167925"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=167925"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}