{"id":168037,"date":"2014-11-01T00:00:00","date_gmt":"2014-11-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/parcast-parallel-video-unicast-in-mimo-ofdm-wlans\/"},"modified":"2018-10-16T21:07:09","modified_gmt":"2018-10-17T04:07:09","slug":"parcast-parallel-video-unicast-in-mimo-ofdm-wlans","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/parcast-parallel-video-unicast-in-mimo-ofdm-wlans\/","title":{"rendered":"ParCast+: Parallel Video Unicast in MIMO-OFDM WLANs"},"content":{"rendered":"

We have observed two trends, growing wireless capability at the physical layer powered by MIMO-OFDM and growing video traffic as the dominant application traffic. Both the video source and MIMO-OFDM channel components exhibit nonuniform energy distribution. This has motivated us to leverage the source data redundancy at the channel to achieve high video recovery performance. We propose ParCast+ that first separates the source and the channel into independent components, matches the more important source components with higher-gain channel components, allocates power weights with joint consideration to the source and the channel, and uses pseudo-analog modulation for transmission. Such a scheme achieves fine-grained unequal error protection across source components. We implemented ParCast+ in Matlab and on Sora. Extensive evaluation has shown that our scheme outperforms competing schemes by notable margins, sometimes up to 6.4 dB in PSNR for challenging scenarios.<\/p>\n","protected":false},"excerpt":{"rendered":"

We have observed two trends, growing wireless capability at the physical layer powered by MIMO-OFDM and growing video traffic as the dominant application traffic. Both the video source and MIMO-OFDM channel components exhibit nonuniform energy distribution. This has motivated us to leverage the source data redundancy at the channel to achieve high video recovery performance. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13551],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168037","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-graphics-and-multimedia","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Multimedia, IEEE Transactions on","msr_affiliation":"","msr_published_date":"2014-11-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"2038-2051","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Transactions on Multimedia","msr_volume":"16","msr_number":"7","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/ieeexplore.ieee.org\/xpl\/articleDetails.jsp?arnumber=6839042","msr_doi":"10.1109\/TMM.2014.2331616","msr_publication_uploader":[{"type":"url","title":"http:\/\/ieeexplore.ieee.org\/xpl\/articleDetails.jsp?arnumber=6839042","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1109\/TMM.2014.2331616","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/ieeexplore.ieee.org\/xpl\/articleDetails.jsp?arnumber=6839042"}],"msr-author-ordering":[{"type":"text","value":"Xiao Lin Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"wenjun","user_id":34818,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=wenjun"},{"type":"user_nicename","value":"cluo","user_id":31450,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=cluo"},{"type":"text","value":"Qifan Pu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"fengwu","user_id":31799,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=fengwu"},{"type":"user_nicename","value":"ygz","user_id":34995,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ygz"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168037"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168037\/revisions"}],"predecessor-version":[{"id":533019,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168037\/revisions\/533019"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168037"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168037"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168037"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168037"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168037"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168037"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168037"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168037"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168037"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168037"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168037"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168037"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168037"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168037"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168037"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168037"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}