{"id":168181,"date":"2015-07-01T00:00:00","date_gmt":"2015-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/immortalgraph-a-system-for-storage-and-analysis-of-temporal-graphs\/"},"modified":"2018-10-16T21:11:37","modified_gmt":"2018-10-17T04:11:37","slug":"immortalgraph-a-system-for-storage-and-analysis-of-temporal-graphs","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/immortalgraph-a-system-for-storage-and-analysis-of-temporal-graphs\/","title":{"rendered":"ImmortalGraph: A System for Storage and Analysis of Temporal Graphs"},"content":{"rendered":"
\n

Temporal graphs that capture graph changes over time are attracting increasing interest from research communities, for functions such as understanding temporal characteristics of social interactions on a time-evolving social graph. ImmortalGraph is a storage and execution engine designed and optimized specifically for temporal graphs. Locality is at the center of ImmortalGraph\u2019s design: temporal graphs are carefully laid out in both persistent storage and memory, taking into account data locality in both time and graph-structure dimensions. ImmortalGraph introduces the notion of locality-aware batch scheduling in computation, so that common \u201cbulk\u201d operations on temporal graphs are scheduled to maximize the benefit of in-memory data locality. The design of ImmortalGraph explores an interesting interplay among locality, parallelism, and incremental computation in supporting common mining tasks on temporal graphs. The result is a high-performance temporal-graph system that is up to 5 times more efficient than existing database solutions for graph queries. The locality optimizations in ImmortalGraph offer up to an order of magnitude speedup for temporal iterative graph mining compared to a straightforward application of existing graph engines on a series of snapshots.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Temporal graphs that capture graph changes over time are attracting increasing interest from research communities, for functions such as understanding temporal characteristics of social interactions on a time-evolving social graph. ImmortalGraph is a storage and execution engine designed and optimized specifically for temporal graphs. Locality is at the center of ImmortalGraph\u2019s design: temporal graphs are […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168181","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"ACM - Association for Computing Machinery","msr_edition":"ACM Transactions on Storage (TOS)","msr_affiliation":"","msr_published_date":"2015-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"ACM Transactions on Storage (TOS)","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=2700302&dl=ACM","msr_doi":"10.1145\/2700302","msr_publication_uploader":[{"type":"url","title":"http:\/\/dl.acm.org\/citation.cfm?id=2700302&dl=ACM","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/2700302","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=2700302&dl=ACM"}],"msr-author-ordering":[{"type":"user_nicename","value":"yomia","user_id":35038,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yomia"},{"type":"text","value":"Wentao Han","user_id":0,"rest_url":false},{"type":"text","value":"Kaiwei Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"miw","user_id":32960,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=miw"},{"type":"user_nicename","value":"vijayanp","user_id":34582,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=vijayanp"},{"type":"text","value":"Enhong Chen","user_id":0,"rest_url":false},{"type":"text","value":"Wenguang Chen","user_id":0,"rest_url":false},{"type":"user_nicename","value":"fanyang","user_id":31782,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=fanyang"},{"type":"user_nicename","value":"lidongz","user_id":32673,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lidongz"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[510017,920469],"msr_project":[170955],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":170955,"post_title":"Graph Storage and Analysis","post_name":"temporal-graph-storage-and-analysis-of-social-data","post_type":"msr-project","post_date":"2012-05-17 23:28:59","post_modified":"2020-04-20 22:48:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/temporal-graph-storage-and-analysis-of-social-data\/","post_excerpt":"An explosion of user-generated data from online social networks motivates analysis to extract deep insights from this data's graph at scale, even of social, temporal, spatial, and topical connections. We are building systems to enable storage and analysis of such graphs that considers characteristics such as evolution over time when trending topics or social activities change. We also leverage graph computation techniques to accelerate traditional machine learning tasks.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170955"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168181","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168181\/revisions"}],"predecessor-version":[{"id":533701,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168181\/revisions\/533701"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168181"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168181"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168181"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168181"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168181"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168181"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168181"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168181"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168181"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168181"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168181"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168181"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168181"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168181"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168181"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168181"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}