{"id":168218,"date":"2008-08-01T00:00:00","date_gmt":"2008-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/improved-algorithms-for-optimal-embeddings\/"},"modified":"2018-10-16T21:12:43","modified_gmt":"2018-10-17T04:12:43","slug":"improved-algorithms-for-optimal-embeddings","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/improved-algorithms-for-optimal-embeddings\/","title":{"rendered":"Improved algorithms for optimal embeddings"},"content":{"rendered":"
In the last decade, the notion of metric embeddings with small distortion has received wide attention in the literature, with applications in combinatorial optimization, discrete mathematics, and bio-informatics. The notion of embedding is, given two metric spaces on the same number of points, to find a bijection that minimizes maximum Lipschitz and bi-Lipschitz constants. One reason for the popularity of the notion is that algorithms designed for one metric space can be applied to a different one, given an embedding with small distortion. The better distortion, the better the effectiveness of the original algorithm applied to a new metric space.<\/p>\n
The goal recently studied by Kenyon et al. [2004] is to consider all possible embeddings between two finite<\/i> metric spaces and to find the best possible one; that is, consider a single objective function over the space of all possible embeddings that minimizes the distortion. In this article we continue this important direction. In particular, using a theorem of Albert and Atkinson [2005], we are able to provide an algorithm to find the optimal bijection between two line metrics, provided that the optimal distortion is smaller than 13.602. This improves the previous bound of 3 + 2&sqrt;2, solving an open question posed by Kenyon et al. [2004]. Further, we show an inherent limitation of algorithms using the \u201cforbidden pattern\u201d based dynamic programming approach, in that they cannot find optimal mapping if the optimal distortion is more than 7 + 4&sqrt;3 (\u2243 13.928). Thus, our results are almost optimal for this method. We also show that previous techniques for general embeddings apply to a (slightly) more general class of metrics.<\/p>\n<\/div>\n<\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"
In the last decade, the notion of metric embeddings with small distortion has received wide attention in the literature, with applications in combinatorial optimization, discrete mathematics, and bio-informatics. The notion of embedding is, given two metric spaces on the same number of points, to find a bijection that minimizes maximum Lipschitz and bi-Lipschitz constants. One […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168218","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"ACM - Association for Computing Machinery","msr_edition":"ACM Transactions on Algorithms","msr_affiliation":"","msr_published_date":"2008-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"ACM Transactions on Algorithms","msr_volume":"4","msr_number":"4","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/doi.acm.org\/10.1145\/1383369.1383376","msr_doi":"10.1145\/1383369.1383376","msr_publication_uploader":[{"type":"url","title":"http:\/\/doi.acm.org\/10.1145\/1383369.1383376","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/1383369.1383376","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/doi.acm.org\/10.1145\/1383369.1383376"}],"msr-author-ordering":[{"type":"user_nicename","value":"nichandr","user_id":33084,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nichandr"},{"type":"text","value":"Ryan Moriarty","user_id":0,"rest_url":false},{"type":"text","value":"Rafail Ostrovsky","user_id":0,"rest_url":false},{"type":"text","value":"Omkant Pandey","user_id":0,"rest_url":false},{"type":"text","value":"Mohammad Ali Safari","user_id":0,"rest_url":false},{"type":"text","value":"Amit Sahai","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144938],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168218"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168218\/revisions"}],"predecessor-version":[{"id":409934,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168218\/revisions\/409934"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168218"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168218"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168218"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168218"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168218"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168218"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168218"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168218"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168218"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168218"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168218"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168218"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168218"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168218"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168218"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168218"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}