{"id":168314,"date":"2015-08-29T00:00:00","date_gmt":"2015-08-29T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/new-transfer-learning-techniques-for-disparate-label-sets\/"},"modified":"2018-10-16T20:14:44","modified_gmt":"2018-10-17T03:14:44","slug":"new-transfer-learning-techniques-for-disparate-label-sets","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/new-transfer-learning-techniques-for-disparate-label-sets\/","title":{"rendered":"New Transfer Learning Techniques For Disparate Label Sets"},"content":{"rendered":"
\n

In natural language understanding (NLU), a user utterance can be labeled differently depending on the domain or application (e.g., weather vs. calendar). Standard domain adaptation techniques are not directly applicable to take advantage of the existing annotations because they assume that the label set is invariant. We propose a solution based on label embeddings induced from canonical correlation analysis (CCA) that reduces the problem to a standard domain adaptation task and allows use of a number of transfer learning techniques. We also introduce a new transfer learning technique based on pretraining of hidden-unit CRFs (HUCRFs). We perform extensive experiments on slot tagging on eight personal digital assistant domains and demonstrate that the proposed methods are superior to strong baselines.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

In natural language understanding (NLU), a user utterance can be labeled differently depending on the domain or application (e.g., weather vs. calendar). Standard domain adaptation techniques are not directly applicable to take advantage of the existing annotations because they assume that the label set is invariant. We propose a solution based on label embeddings induced […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13545,13546,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168314","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-computational-sciences-mathematics","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"ACL - Association for Computational Linguistics","msr_edition":"Association for Computational Linguistics (ACL)","msr_affiliation":"","msr_published_date":"2015-08-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"Association for Computational Linguistics (ACL)","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"217030","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"acl15transfer_ybkim.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2015\/08\/acl15transfer_ybkim.pdf","id":217030,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":217030,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2015\/08\/acl15transfer_ybkim.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"ybkim","user_id":34985,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ybkim"},{"type":"text","value":"Karl Stratos","user_id":0,"rest_url":false},{"type":"user_nicename","value":"rusarika","user_id":33472,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rusarika"},{"type":"text","value":"Minwoo Jeong","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144911,144940],"msr_project":[171150,170147],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}},{"ID":170147,"post_title":"Understand User's Intent from Speech and Text","post_name":"understand-users-intent-from-speech-and-text","post_type":"msr-project","post_date":"2008-12-17 11:20:26","post_modified":"2019-08-19 15:33:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/understand-users-intent-from-speech-and-text\/","post_excerpt":"Understanding what users like to do\/need to get is critical in human computer interaction. When natural user interface like speech or natural language is used in human-computer interaction, such as in a spoken dialogue system or with an internet search engine, language understanding becomes an important issue. Intent understanding is about identifying the action a user wants a computer to take or the information she\/he would like to obtain, conveyed in a spoken utterance or…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170147"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168314"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168314\/revisions"}],"predecessor-version":[{"id":524711,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168314\/revisions\/524711"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168314"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168314"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168314"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168314"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168314"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168314"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168314"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168314"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168314"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168314"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168314"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168314"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168314"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168314"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168314"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168314"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}