{"id":168321,"date":"2014-12-01T00:00:00","date_gmt":"2014-12-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/provable-submodular-minimization-using-wolfes-algorithm\/"},"modified":"2018-10-16T20:15:05","modified_gmt":"2018-10-17T03:15:05","slug":"provable-submodular-minimization-using-wolfes-algorithm","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/provable-submodular-minimization-using-wolfes-algorithm\/","title":{"rendered":"Provable Submodular Minimization Using Wolfe’s Algorithm"},"content":{"rendered":"
Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [10, 11]. However, these algorithms are typically not practical. In 1976, Wolfe [21] proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fujishige [3] showed how Wolfe\u2019s algorithm can be used for SFM. For general submodular functions, this Fujishige-Wolfe minimum norm algorithm seems to have the best empirical performance.<\/p>\n
Despite its good practical performance, very little is known about Wolfe\u2019s minimum norm algorithm theoretically. To our knowledge, the only result is an exponential time analysis due to Wolfe [21] himself. In this paper we give a maiden convergence analysis of Wolfe\u2019s algorithm. We prove that in t<\/em> iterations, Wolfe\u2019s algorithm returns an O<\/em>(1\/t<\/em>)-approximate solution to the min-norm point on any<\/em> polytope. We also prove a robust version of Fujishige\u2019s theorem which shows that an O<\/em>(1\/n<\/em>2<\/sup>)-approximate solution to the min-norm point on the base polytope implies exact<\/em> submodular minimization. As a corollary, we get the first pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum norm algorithm for unconstrained submodular function minimization.<\/p>\n<\/div>\n <\/p>\n","protected":false},"excerpt":{"rendered":" Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [10, 11]. However, these algorithms are typically not practical. In 1976, Wolfe [21] proposed an algorithm to find the minimum Euclidean norm point in a […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168321","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"MIT Press Cambridge, MA, USA","msr_edition":"NIPS'14 Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada","msr_affiliation":"","msr_published_date":"2014-12-08","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"802-809","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"324206","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Provable Submodular Minimization via Fujishige-Wolfe\u2019s Algorithm","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2014\/12\/Provable-Submodular-Minimization-via-Fujishige-Wolfes-Algorithm.pdf","id":324206,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"dechakr","user_id":31593,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dechakr"},{"type":"user_nicename","value":"prajain","user_id":33278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=prajain"},{"type":"text","value":"Pravesh Kothari","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144938],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168321"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168321\/revisions"}],"predecessor-version":[{"id":524814,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168321\/revisions\/524814"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168321"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168321"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168321"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168321"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168321"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168321"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168321"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168321"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168321"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168321"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168321"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168321"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168321"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168321"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168321"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168321"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}