{"id":168426,"date":"2015-05-01T00:00:00","date_gmt":"2015-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/vc3-trustworthy-data-analytics-in-the-cloud-using-sgx\/"},"modified":"2019-01-11T01:58:21","modified_gmt":"2019-01-11T09:58:21","slug":"vc3-trustworthy-data-analytics-in-the-cloud-using-sgx","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/vc3-trustworthy-data-analytics-in-the-cloud-using-sgx\/","title":{"rendered":"VC3: Trustworthy Data Analytics in the Cloud using SGX"},"content":{"rendered":"
We present VC3, the first system that allows users to run distributed MapReduce computations in the cloud while keeping their code and data secret, and ensuring the correctness and completeness of their results. VC3 runs on unmodified Hadoop, but crucially keeps Hadoop, the operating system and the hypervisor out of the TCB; thus, confidentiality and integrity are preserved even if these large components are compromised. VC3 relies on SGX processors to isolate memory regions on individual computers, and to deploy new protocols that secure distributed MapReduce computations. VC3 optionally enforces region self-integrity invariants for all MapReduce code running within isolated regions, to prevent attacks due to unsafe memory reads and writes. Experimental results on common benchmarks show that VC3 performs well compared with unprotected Hadoop: VC3\u2019s average runtime overhead is negligible for its base security guarantees, 4.5% with write integrity and 8% with read\/write integrity.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
We present VC3, the first system that allows users to run distributed MapReduce computations in the cloud while keeping their code and data secret, and ensuring the correctness and completeness of their results. VC3 runs on unmodified Hadoop, but crucially keeps Hadoop, the operating system and the hypervisor out of the TCB; thus, confidentiality and […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168426","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"IEEE - Institute of Electrical and Electronics Engineers","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-5-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204378","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/vc3-oakland2015.pdf","id":"204378","title":"vc3-oakland2015.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":204378,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/vc3-oakland2015.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Felix Schuster","user_id":31804,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Felix Schuster"},{"type":"user_nicename","value":"Manuel Costa","user_id":32794,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Manuel Costa"},{"type":"user_nicename","value":"C\u00e9dric Fournet","user_id":31819,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=C\u00e9dric Fournet"},{"type":"user_nicename","value":"Christos Gkantsidis","user_id":31424,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Christos Gkantsidis"},{"type":"user_nicename","value":"Marcus Peinado","user_id":32804,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marcus Peinado"},{"type":"user_nicename","value":"Gloria Mainar-Ruiz","user_id":31888,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Gloria Mainar-Ruiz"},{"type":"text","value":"Mark Russinovich","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[559983,761911],"msr_project":[648207],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":648207,"post_title":"Confidential AI","post_name":"confidential-ai","post_type":"msr-project","post_date":"2020-05-15 05:46:38","post_modified":"2023-02-15 01:10:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/confidential-ai\/","post_excerpt":"Our goal is to make Azure the most trustworthy cloud platform for AI. The platform we envisage offers confidentiality and integrity against privileged attackers including attacks on the code, data and hardware supply chains, performance close to that offered by GPUs, and programmability of state-of-the-art ML frameworks. The confidential AI platform will enable multiple entities to collaborate and train accurate models using sensitive data, and serve these models with assurance that their data and models…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/648207"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168426"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168426\/revisions"}],"predecessor-version":[{"id":559992,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168426\/revisions\/559992"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168426"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168426"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168426"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168426"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168426"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168426"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168426"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168426"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168426"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168426"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168426"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168426"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168426"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168426"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168426"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168426"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}