{"id":168427,"date":"2014-09-07T00:00:00","date_gmt":"2014-09-07T07:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/demo-tracking-user-browsing-on-a-demo-floor\/"},"modified":"2018-10-16T20:19:47","modified_gmt":"2018-10-17T03:19:47","slug":"demo-tracking-user-browsing-on-a-demo-floor","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/demo-tracking-user-browsing-on-a-demo-floor\/","title":{"rendered":"Demo: Tracking User Browsing on a Demo Floor"},"content":{"rendered":"

Our demo tracks physical browsing by users in indoor spaces. Analogous to online browsing, where users choose to go to certain webpages, dwell on a subset of pages of interest to them, and click on links of interest while ignoring others, we can draw parallels in the physical setting, where a user might walk purposefully to a section of interest, dwell there for a while, and gaze at specific items that they wish to know more about.<\/p>\n","protected":false},"excerpt":{"rendered":"

Our demo tracks physical browsing by users in indoor spaces. Analogous to online browsing, where users choose to go to certain webpages, dwell on a subset of pages of interest to them, and click on links of interest while ignoring others, we can draw parallels in the physical setting, where a user might walk purposefully […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168427","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"ACM - Association for Computing Machinery","msr_edition":"Mobicom 2014","msr_affiliation":"","msr_published_date":"2014-09-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"271-274","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=2641754","msr_doi":"10.1145\/2639108.2641754","msr_publication_uploader":[{"type":"url","title":"http:\/\/dl.acm.org\/citation.cfm?id=2641754","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/2639108.2641754","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=2641754"}],"msr-author-ordering":[{"type":"text","value":"Swati Rallapalli","user_id":0,"rest_url":false},{"type":"user_nicename","value":"krchinta","user_id":32577,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=krchinta"},{"type":"user_nicename","value":"padmanab","user_id":33180,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=padmanab"},{"type":"text","value":"Lili Qiu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144725,144939],"msr_project":[171101],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171101,"post_title":"Phytics: Physical Analytics","post_name":"phytics-physical-analytics","post_type":"msr-project","post_date":"2013-02-18 00:54:57","post_modified":"2020-12-10 19:56:31","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/phytics-physical-analytics\/","post_excerpt":"The goal of the Physical Analytics project, or Phytics, is to perform analytics on the physical actions of users. Such analytics would be valuable in a variety of contexts where the design of a physical space is intertwined with how users use the space, e.g., to understand the behaviour of shoppers in mall or a store, which might be indicative of their interests; to fine-tune the layout of services in an airport or a train…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171101"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168427"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168427\/revisions"}],"predecessor-version":[{"id":526147,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168427\/revisions\/526147"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168427"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168427"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168427"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168427"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168427"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168427"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168427"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168427"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168427"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168427"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168427"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168427"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168427"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168427"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168427"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168427"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}