{"id":168760,"date":"2015-08-01T00:00:00","date_gmt":"2015-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/low-latency-geo-distributed-data-analytics\/"},"modified":"2018-10-16T22:24:08","modified_gmt":"2018-10-17T05:24:08","slug":"low-latency-geo-distributed-data-analytics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/low-latency-geo-distributed-data-analytics\/","title":{"rendered":"Low Latency Geo-distributed Data Analytics"},"content":{"rendered":"
\n

Low latency analytics on geographically distributed datasets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single datacenter significantly in ates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links.<\/p>\n

We present Iridium, a system for low latency geo-distributed analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement optimization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior<\/em> to queries’ arrivals, and places the tasks to reduce network bottlenecks during<\/em> the query’s execution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 regions using production queries show that Iridium speeds up queries by 3x – 19x and lowers WAN usage by 15% – 64% compared to existing baselines.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Low latency analytics on geographically distributed datasets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single datacenter significantly in ates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168760","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"ACM SIGCOMM","msr_affiliation":"","msr_published_date":"2015-08-15","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"204240","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"gda.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/gda.pdf","id":204240,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":204240,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/gda.pdf"}],"msr-author-ordering":[{"type":"text","value":"Qifan Pu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ganesh Ananthanarayanan","user_id":31834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ganesh Ananthanarayanan"},{"type":"user_nicename","value":"Peter Bod\u00edk","user_id":33239,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Peter Bod\u00edk"},{"type":"user_nicename","value":"Srikanth Kandula","user_id":33707,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Srikanth Kandula"},{"type":"text","value":"Aditya Akella","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Victor Bahl","user_id":31167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Victor Bahl"},{"type":"text","value":"Ion Stoica","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144899],"msr_project":[212082],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":212082,"post_title":"Edge Computing","post_name":"edge-computing","post_type":"msr-project","post_date":"2020-02-23 16:44:03","post_modified":"2020-11-12 19:40:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/edge-computing\/","post_excerpt":"Industries ranging from manufacturing to healthcare are eager to develop real-time control systems that use machine learning and artificial intelligence to improve efficiencies and reduce cost. We are exploring this new computing paradigm by identifying and addressing emerging technology and business model challenges.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212082"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168760"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168760\/revisions"}],"predecessor-version":[{"id":500855,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168760\/revisions\/500855"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168760"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168760"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168760"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168760"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168760"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168760"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168760"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168760"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168760"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168760"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168760"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168760"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168760"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168760"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168760"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168760"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}