{"id":168840,"date":"2014-12-01T00:00:00","date_gmt":"2014-12-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/non-convex-robust-pca\/"},"modified":"2019-11-13T13:59:03","modified_gmt":"2019-11-13T21:59:03","slug":"non-convex-robust-pca","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/non-convex-robust-pca\/","title":{"rendered":"Non-convex Robust PCA"},"content":{"rendered":"

We propose a new method for robust PCA — the task of recovering a low-rank matrix from sparse corruptions that are of unknown value and support. Our method involves alternating between projecting appropriate residuals onto the set of low-rank matrices, and the set of sparse matrices; each projection is {\\em non-convex} but easy to compute. In spite of this non-convexity, we establish exact recovery of the low-rank matrix, under the same conditions that are required by existing methods (which are based on convex optimization). For an m\u00d7n input matrix (m\u2264n), our method has a running time of O(r2mn) per iteration, and needs O(log(1\/\u03f5)) iterations to reach an accuracy of \u03f5. This is close to the running time of simple PCA via the power method, which requires O(rmn) per iteration, and O(log(1\/\u03f5)) iterations. In contrast, existing methods for robust PCA, which are based on convex optimization, have O(m2n) complexity per iteration, and take O(1\/\u03f5) iterations, i.e., exponentially more iterations for the same accuracy.\u00a0 Experiments on both synthetic and real data establishes the improved speed and accuracy of our method over existing convex implementations.<\/p>\n","protected":false},"excerpt":{"rendered":"

We propose a new method for robust PCA — the task of recovering a low-rank matrix from sparse corruptions that are of unknown value and support. Our method involves alternating between projecting appropriate residuals onto the set of low-rank matrices, and the set of sparse matrices; each projection is {\\em non-convex} but easy to compute. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168840","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"Neural Information Processing Systems","msr_edition":"","msr_affiliation":"","msr_published_date":"2014-12-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"457356","msr_publicationurl":"http:\/\/arxiv.org\/abs\/1410.7660","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2014\/12\/1410.7660v1-1.pdf","id":"457356","title":"Non-convex Robust PCA","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/arxiv.org\/abs\/1410.7660","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/arxiv.org\/abs\/1410.7660"}],"msr-author-ordering":[{"type":"user_nicename","value":"Praneeth Netrapalli","user_id":33279,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Praneeth Netrapalli"},{"type":"text","value":"U N Niranjan","user_id":0,"rest_url":false},{"type":"text","value":"Sujay Sanghavi","user_id":0,"rest_url":false},{"type":"text","value":"Anima Anandkumar","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Prateek Jain","user_id":33278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Prateek Jain"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[425610],"msr_group":[144924,144938,144940],"msr_project":[171330],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171330,"post_title":"Provable Non-convex Optimization for Machine Learning Problems","post_name":"provable-non-convex-optimization-for-machine-learning-problems","post_type":"msr-project","post_date":"2014-04-04 06:19:02","post_modified":"2019-11-18 10:38:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/provable-non-convex-optimization-for-machine-learning-problems\/","post_excerpt":"We explore theoretical properties of simple non-convex optimization methods for problems that feature prominently in several important areas such as recommendation systems, compressive sensing, computer vision etc.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171330"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168840"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168840\/revisions"}],"predecessor-version":[{"id":442704,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168840\/revisions\/442704"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168840"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168840"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168840"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168840"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168840"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168840"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168840"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168840"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168840"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168840"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168840"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168840"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168840"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168840"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168840"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168840"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}