{"id":168898,"date":"2015-08-01T00:00:00","date_gmt":"2015-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/harvesting-spare-cycles-and-storage-in-large-scale-datacenters\/"},"modified":"2018-10-16T22:30:04","modified_gmt":"2018-10-17T05:30:04","slug":"harvesting-spare-cycles-and-storage-in-large-scale-datacenters","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/harvesting-spare-cycles-and-storage-in-large-scale-datacenters\/","title":{"rendered":"History-Based Harvesting Spare Cycles and Storage in Large-Scale Datacenters"},"content":{"rendered":"
\n

An effective way to increase utilization and reduce costs in datacenters is to co-locate their latency-critical services and batch workloads. In this paper, we describe systems that harvest spare compute cycles and storage space for co-location purposes. The main challenge is minimizing the performance impact on the services, while accounting for their utilization and management patterns. To overcome this challenge, we propose techniques for giving the services priority over the resources, and leveraging historical information about them. Based on this information, we schedule related batch tasks on servers that exhibit <\/span><\/span>similar <\/span><\/i><\/span>patterns and will likely have enough available resources for the tasks\u2019 durations, and place data replicas at servers that exhibit <\/span><\/span>diverse <\/span><\/i><\/span>patterns.\u00a0We characterize the dynamics of how services are utilized and managed in ten large-scale production datacenters. Using real experiments and simulations, we show that our techniques eliminate data loss and unavailability in many scenarios, while protecting the co-located services and improving batch job execution time.<\/span><\/span><\/p>\n

 <\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

An effective way to increase utilization and reduce costs in datacenters is to co-locate their latency-critical services and batch workloads. In this paper, we describe systems that harvest spare compute cycles and storage space for co-location purposes. The main challenge is minimizing the performance impact on the services, while accounting for their utilization and management […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-168898","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2016-11-02","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"302558","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"harvesting-osdi16","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2015\/08\/Harvesting-OSDI16.pdf","id":302558,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yunqi Zhang","user_id":0,"rest_url":false},{"type":"text","value":"George Prekas","user_id":0,"rest_url":false},{"type":"text","value":"Giovanni Matteo Fumarola","user_id":0,"rest_url":false},{"type":"text","value":"Marcus Fontoura","user_id":0,"rest_url":false},{"type":"user_nicename","value":"inigog","user_id":32102,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=inigog"},{"type":"user_nicename","value":"ricardob","user_id":33393,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ricardob"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144927,282170],"msr_project":[465501],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":465501,"post_title":"Multitenancy in Autopilot","post_name":"multitenancy","post_type":"msr-project","post_date":"2018-02-08 16:20:46","post_modified":"2020-03-13 17:36:40","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/multitenancy\/","post_excerpt":"The Multitenancy in Autopilot project leverages spare capacity in Bing to run batch workloads (i.e., data analytics).","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/465501"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168898","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168898\/revisions"}],"predecessor-version":[{"id":465522,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/168898\/revisions\/465522"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=168898"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=168898"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=168898"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=168898"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=168898"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=168898"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=168898"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=168898"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=168898"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=168898"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=168898"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=168898"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=168898"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=168898"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=168898"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=168898"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}