{"id":238032,"date":"2015-07-01T00:00:00","date_gmt":"2015-07-01T07:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/an-energy-efficiency-perspective-on-rate-adaptation-for-802-11-n-nic\/"},"modified":"2018-10-16T21:57:15","modified_gmt":"2018-10-17T04:57:15","slug":"energy-efficiency-perspective-rate-adaptation-802-11-n-nic","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/energy-efficiency-perspective-rate-adaptation-802-11-n-nic\/","title":{"rendered":"An Energy Efficiency Perspective on Rate Adaptation for 802.11 n NIC"},"content":{"rendered":"

Rate adaptation (RA) has been traditionally used to achieve high goodput. In this work, we design RA for 802.11n NICs from an energy-efficiency perspective. We show that current MIMO RA algorithms are not energy efficient for NICs despite ensuring high throughput. The fundamental problem is that, the high-throughput setting is not equivalent to the energy-efficient one. Marginal throughput gain may be realized at high energy cost. We then propose EERA and EERA+, two energy-based RA schemes that trade off goodput for energy savings at NICs. EERA applies multidimensional ternary search and simultaneous pruning to speed up its runtime convergence in single-client operations, and uses fair airtime sharing to handle multiple-client operations. EERA+ further searches for multiple, staged rates to yield more energy savings over EERA. Our experiments have confirmed their effectiveness in various scenarios.<\/p>\n","protected":false},"excerpt":{"rendered":"

Rate adaptation (RA) has been traditionally used to achieve high goodput. In this work, we design RA for 802.11n NICs from an energy-efficiency perspective. We show that current MIMO RA algorithms are not energy efficient for NICs despite ensuring high throughput. The fundamental problem is that, the high-throughput setting is not equivalent to the energy-efficient […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-238032","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"IEEE Transactions on Mobile Computing, TMC","msr_affiliation":"","msr_published_date":"2015-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Transactions on Mobile Computing","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=7173011","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=7173011","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=7173011"}],"msr-author-ordering":[{"type":"text","value":"Chi-Yu Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"pengc","user_id":33225,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=pengc"},{"type":"text","value":"Songwu Lu","user_id":0,"rest_url":false},{"type":"text","value":"Xinbing Wang","user_id":0,"rest_url":false},{"type":"text","value":"Fengyuan Ren","user_id":0,"rest_url":false},{"type":"text","value":"Tao Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/238032"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/238032\/revisions"}],"predecessor-version":[{"id":410261,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/238032\/revisions\/410261"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=238032"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=238032"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=238032"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=238032"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=238032"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=238032"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=238032"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=238032"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=238032"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=238032"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=238032"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=238032"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=238032"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=238032"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=238032"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=238032"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}