{"id":244115,"date":"2011-06-05T00:00:21","date_gmt":"2011-06-05T07:00:21","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=244115"},"modified":"2018-10-26T18:09:55","modified_gmt":"2018-10-27T01:09:55","slug":"low-energy-computation-platform-data-driven-biomedical-monitoring","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/low-energy-computation-platform-data-driven-biomedical-monitoring\/","title":{"rendered":"A Low-energy Computation Platform for Data-driven Biomedical Monitoring"},"content":{"rendered":"
A key challenge in closed-loop chronic biomedical systems is the ability to detect complex physiological states from patient signals within a constrained power budget. Data-driven machine-learning techniques are major enablers for the modeling and interpretation of such states. Their computational energy, however, scales with the complexity of the required models. In this paper, we propose a low-energy, biomedical computation platform optimized through the use of an accelerator for data-driven classification. The accelerator retains selective flexibility through hardware reconfiguration and exploits voltage scaling and parallelism to operate at a sub-threshold minimum-energy point. Using cardiac arrhythmia detection algorithms with patient data from the MIT-BIH database, classification is achieved in 2.96 \u03bcJ (at Vdd = 0.4 V), over four orders of magnitude smaller than that on a low-power general-purpose processor. The energy of feature extraction is 148 \u03bcJ while retaining flexibility for a range of possible biomarkers.<\/p>\n","protected":false},"excerpt":{"rendered":"
A key challenge in closed-loop chronic biomedical systems is the ability to detect complex physiological states from patient signals within a constrained power budget. Data-driven machine-learning techniques are major enablers for the modeling and interpretation of such states. Their computational energy, however, scales with the complexity of the required models. In this paper, we propose […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062,13552,13553,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-244115","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-hardware-devices","msr-research-area-medical-health-genomics","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"IEEE - Institute of Electrical and Electronics Engineers","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-6-5","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"433860","msr_publicationurl":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=5981857","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/06\/Shoaib_DAC_2011.pdf","id":"433860","title":"Shoaib_DAC_2011","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=5981857","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/ieeexplore.ieee.org\/xpls\/abs_all.jsp?arnumber=5981857"}],"msr-author-ordering":[{"type":"user_nicename","value":"Shuayb Zarar","user_id":36563,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shuayb Zarar"},{"type":"text","value":"Niraj K. Jha","user_id":0,"rest_url":false},{"type":"text","value":"Naveen Verma","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144923],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/244115","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/244115\/revisions"}],"predecessor-version":[{"id":454467,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/244115\/revisions\/454467"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=244115"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=244115"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=244115"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=244115"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=244115"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=244115"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=244115"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=244115"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=244115"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=244115"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=244115"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=244115"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=244115"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=244115"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=244115"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=244115"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}