{"id":245579,"date":"2016-06-29T15:10:00","date_gmt":"2016-06-29T22:10:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=245579"},"modified":"2018-10-16T20:11:32","modified_gmt":"2018-10-17T03:11:32","slug":"exact-exponent-in-optimal-rates-for-crowdsourcing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/exact-exponent-in-optimal-rates-for-crowdsourcing\/","title":{"rendered":"Exact Exponent in Optimal Rates for Crowdsourcing"},"content":{"rendered":"

Crowdsourcing has become a popular tool for labeling large datasets. This paper studies the optimal error rate for aggregating crowdsourced labels provided by a collection of amateur workers. Under the Dawid-Skene probabilistic model, we establish matching upper and lower bounds with an exact exponent m<\/i>I<\/i>(\u03c0<\/i>), where m<\/i>\u00a0is the number of workers and I<\/i>(\u03c0<\/i>)\u00a0is the average Chernoff information that characterizes the workers\u2019 collective ability. Such an exact characterization of the error exponent allows us to state a precise sample size requirement m<\/i>\u22651\/I<\/i>(\u03c0<\/i>)\u00a0log(1\/\u03f5<\/i>)\u00a0\u00a0in order to achieve an\u00a0\u03f5 misclassification error. In addition, our results imply optimality of various forms of EM algorithms given accurate initializers of the model parameters<\/p>\n","protected":false},"excerpt":{"rendered":"

Crowdsourcing has become a popular tool for labeling large datasets. This paper studies the optimal error rate for aggregating crowdsourced labels provided by a collection of amateur workers. Under the Dawid-Skene probabilistic model, we establish matching upper and lower bounds with an exact exponent mI(\u03c0), where m\u00a0is the number of workers and I(\u03c0)\u00a0is the average […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-245579","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 33rd International Conference on Machine Learning","msr_affiliation":"","msr_published_date":"2016-06-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"603--611","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/jmlr.org\/proceedings\/papers\/v48\/gaoa16.html","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/jmlr.org\/proceedings\/papers\/v48\/gaoa16.html","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/jmlr.org\/proceedings\/papers\/v48\/gaoa16.html"}],"msr-author-ordering":[{"type":"text","value":"Chao Gao","user_id":0,"rest_url":false},{"type":"text","value":"Yu Lu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"denzho","user_id":31609,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=denzho"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171217],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171217,"post_title":"Algorithmic Crowdsourcing","post_name":"algorithmic-crowdsourcing","post_type":"msr-project","post_date":"2013-09-26 15:40:30","post_modified":"2019-08-19 14:35:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/algorithmic-crowdsourcing\/","post_excerpt":"To build a machine learning based intelligent system, we often need to collect training labels and feed them into the system. A useful lesson in machine learning is that \"more data beats a clever algorithm\". In the current days, through a commercial crowdsourcing platform, we can easily collect a large amount of labels at a cost of pennies per label. However, the labels obtained from crowdsourcing may be highly noisy. Training a machine learning model…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171217"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/245579"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/245579\/revisions"}],"predecessor-version":[{"id":524110,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/245579\/revisions\/524110"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=245579"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=245579"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=245579"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=245579"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=245579"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=245579"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=245579"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=245579"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=245579"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=245579"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=245579"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=245579"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=245579"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=245579"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=245579"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=245579"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}