{"id":246245,"date":"2016-08-15T10:16:08","date_gmt":"2016-08-15T17:16:08","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=246245"},"modified":"2018-10-16T20:11:53","modified_gmt":"2018-10-17T03:11:53","slug":"robust-influence-maximization","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/robust-influence-maximization\/","title":{"rendered":"Robust Influence Maximization"},"content":{"rendered":"

In this paper, we address the important issue of uncertainty in the edge in\ufb02uence probability estimates for the well studied in\ufb02uence maximization problem \u2014 the task of \ufb01nding k seed nodes in a social network to maximize the in\ufb02uence spread. We propose the problem of robust in\ufb02uence maximization, which maximizes the worst-case ratio between the in\ufb02uence spread of the chosen seed set and the optimal seed set, given the uncertainty of the parameter input. We design an algorithm that solves this problem with a solutiondependent bound. We further study uniform sampling and adaptive sampling methods to e\ufb00ectively reduce the uncertainty on parameters and improve the robustness of the in\ufb02uence maximization task. Our empirical results show that parameter uncertainty may greatly a\ufb00ect in\ufb02uence maximization performance and prior studies that learned in\ufb02uence probabilities could lead to poor performance in robust in\ufb02uence maximization due to relatively large uncertainty in parameter estimates, and information cascade based adaptive sampling method may be an e\ufb00ective way to improve the robustness of in\ufb02uence maximization.<\/p>\n","protected":false},"excerpt":{"rendered":"

In this paper, we address the important issue of uncertainty in the edge in\ufb02uence probability estimates for the well studied in\ufb02uence maximization problem \u2014 the task of \ufb01nding k seed nodes in a social network to maximize the in\ufb02uence spread. We propose the problem of robust in\ufb02uence maximization, which maximizes the worst-case ratio between the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13559],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-246245","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-social-sciences","msr-locale-en_us"],"msr_publishername":"","msr_edition":"In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'2016), San Francisco, U.S.A., August, 2016.","msr_affiliation":"","msr_published_date":"2016-06-30","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2016-17","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"275058","msr_publicationurl":"http:\/\/export.arxiv.org\/abs\/1601.06551","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"kdd16_robustIM_fixed","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/06\/kdd16_robustIM_fixed-1.pdf","id":275058,"label_id":0},{"type":"url","title":"http:\/\/export.arxiv.org\/abs\/1601.06551","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/export.arxiv.org\/abs\/1601.06551"}],"msr-author-ordering":[{"type":"user_nicename","value":"weic","user_id":34795,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=weic"},{"type":"text","value":"Tian Lin","user_id":0,"rest_url":false},{"type":"text","value":"Zihan Tan","user_id":0,"rest_url":false},{"type":"text","value":"Mingfei Zhao","user_id":0,"rest_url":false},{"type":"text","value":"Xuren Zhou","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[802999],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246245","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246245\/revisions"}],"predecessor-version":[{"id":524216,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246245\/revisions\/524216"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=246245"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=246245"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=246245"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=246245"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=246245"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=246245"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=246245"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=246245"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=246245"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=246245"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=246245"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=246245"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=246245"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=246245"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=246245"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=246245"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}