{"id":246251,"date":"2016-06-20T11:06:14","date_gmt":"2016-06-20T18:06:14","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=246251"},"modified":"2018-10-16T22:30:34","modified_gmt":"2018-10-17T05:30:34","slug":"contextual-combinatorial-cascading-bandits","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/contextual-combinatorial-cascading-bandits\/","title":{"rendered":"Contextual Combinatorial Cascading Bandits"},"content":{"rendered":"

We propose the contextual combinatorial cascading bandits, a combinatorial online learning game, where at each time step a learning agent is given a set of contextual information, then selects a list of items, and observes stochastic outcomes of a pre\ufb01x in the selected items by some stopping criterion. In online recommendation, the stopping criterion might be the \ufb01rst item a user selects; in network routing, the stopping criterion might be the \ufb01rst edge blocked in a path. We consider position discounts in the list order, so that the agent\u2019s reward is discounted depending on the position where the stopping criterion is met. We design a UCB-type algorithm, C3-UCB, for this problem, prove an n-step regret bound \u02dc O(\u221an) in the general setting, and give \ufb01ner analysis for two special cases. Our work generalizes existing studies in several directions, including contextual information, position discounts, and a more general cascading bandit model. Experiments on synthetic and real datasets demonstrate the advantage of involving contextual information and position discounts.<\/p>\n","protected":false},"excerpt":{"rendered":"

We propose the contextual combinatorial cascading bandits, a combinatorial online learning game, where at each time step a learning agent is given a set of contextual information, then selects a list of items, and observes stochastic outcomes of a pre\ufb01x in the selected items by some stopping criterion. In online recommendation, the stopping criterion might […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-246251","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 33rd International Conference on Machine Learning (ICML'2016), New York, NY, USA, June 2016","msr_affiliation":"","msr_published_date":"2016-06-20","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"48","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"457422","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Contextual Combinatorial Cascading Bandits","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/06\/icml16_c3b_full.pdf","id":457422,"label_id":0},{"type":"file","title":"icml16_c3b_full","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/06\/icml16_c3b_full.pdf","id":455313,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":457422,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2018\/01icml16_c3b_full.pdf"},{"id":455313,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2018\/01\/icml16_c3b_full.pdf"}],"msr-author-ordering":[{"type":"text","value":"Shuai Li","user_id":0,"rest_url":false},{"type":"text","value":"Baoxiang Wang","user_id":0,"rest_url":false},{"type":"text","value":"Shengyu Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"weic","user_id":34795,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=weic"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[802999],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246251","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246251\/revisions"}],"predecessor-version":[{"id":455316,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246251\/revisions\/455316"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=246251"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=246251"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=246251"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=246251"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=246251"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=246251"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=246251"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=246251"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=246251"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=246251"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=246251"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=246251"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=246251"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=246251"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=246251"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=246251"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}