{"id":246422,"date":"2013-06-30T12:35:37","date_gmt":"2013-06-30T19:35:37","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=246422"},"modified":"2019-07-01T20:00:30","modified_gmt":"2019-07-02T03:00:30","slug":"hyperbolicity-small-world-tree-like-random-graphs","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/hyperbolicity-small-world-tree-like-random-graphs\/","title":{"rendered":"On the Hyperbolicity of Small-world and Tree-like Random Graphs"},"content":{"rendered":"
Hyperbolicity is a property of a graph that may be viewed as being a \u201csoft\u201d version of a tree, and recent empirical and theoretical work has suggested that many graphs arising in Internet and related data applications have hyperbolic properties. Here, we consider Gromov\u2019s notion of \u03b4-hyperbolicity, and we establish several positive and negative results for small-world and tree-like random graph models. First, we study the hyperbolicity of the class of Kleinberg small-world random graphs KSW(n,d,\u03b3), where n is the number of vertices in the graph, d is the dimension of the underlying base grid B, and \u03b3 is the small-world parameter such that each node u in the graph connects to another node v in the graph with probability proportional t o1\/dB(u,v)\u03b3 with dB(u,v) being the grid distance from utov in the base grid B. We show that when \u03b3 = d, the parameter value allowing ef\ufb01cient decentralized routing in Kleinberg\u2019s small-world network, with probability 1\u2212o(1) the hyperbolic \u03b4 is \u2126((logn) 1 1.5(d+1)+\u03b5 ) for any \u03b5 > 0 independent of n. Comparing to the diameter of \u0398(logn) in this case, it indicates that hyperbolicity is not signi\ufb01cantly improved comparing to graph diameter even when the long-range connections greatly improves decentralized navigation. We also show that for other values of \u03b3 the hyperbolic \u03b4 is either at the same level or very close to the graph diameter, indicating poor hyperbolicity in these graphs as well. Next we study a class of tree-like graphs called ringed trees that have constant hyperbolicity. We show that adding random links among the leaves in a manner similar to the small-world graph constructions may easily destroy the hyperbolicity of the graphs, except for a class of random edges added using an exponentially decaying probability function based on the ring distance among the leaves. Our study provides one of the \ufb01rs tsigni\ufb01cant analytical results on the hyperbolicity of a rich class of random graphs, which shed light on the relationship between hyperbolicity and navigability of random graphs, as well as on the sensitivity of hyperbolic \u03b4 to noises in random graphs.<\/p>\n","protected":false},"excerpt":{"rendered":"
Hyperbolicity is a property of a graph that may be viewed as being a \u201csoft\u201d version of a tree, and recent empirical and theoretical work has suggested that many graphs arising in Internet and related data applications have hyperbolic properties. Here, we consider Gromov\u2019s notion of \u03b4-hyperbolicity, and we establish several positive and negative results […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13560,13559],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-246422","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-programming-languages-software-engineering","msr-research-area-social-sciences","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-9-30","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Internet Mathematics","msr_volume":"9","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"4","msr_organization":"","msr_how_published":"","msr_notes":"Extended abstract published in Proceedings of the 23rd International Symposium on Algorithms and Computation (ISAAC'2012), Taipei, December 2012.","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"295349","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/InternetMath13_hyperbolic.pdf","id":"295349","title":"internetmath13_hyperbolic","label_id":"243132","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/isaac12_hyperbolic-1.pdf","id":"295352","title":"isaac12_hyperbolic","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":295352,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/isaac12_hyperbolic-1.pdf"},{"id":295349,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/InternetMath13_hyperbolic.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Wei Chen","user_id":34795,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wei Chen"},{"type":"text","value":"Wenjie Fang","user_id":0,"rest_url":false},{"type":"text","value":"Guangda Hu","user_id":0,"rest_url":false},{"type":"text","value":"Michael W. Mahoney","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[802999],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246422","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246422\/revisions"}],"predecessor-version":[{"id":524393,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246422\/revisions\/524393"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=246422"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=246422"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=246422"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=246422"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=246422"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=246422"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=246422"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=246422"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=246422"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=246422"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=246422"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=246422"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=246422"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=246422"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=246422"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=246422"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}