{"id":246524,"date":"2012-12-30T13:15:07","date_gmt":"2012-12-30T21:15:07","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=246524"},"modified":"2021-11-30T04:14:59","modified_gmt":"2021-11-30T12:14:59","slug":"irie-scalable-robust-influence-maximization-social-networks","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/irie-scalable-robust-influence-maximization-social-networks\/","title":{"rendered":"IRIE: Scalable and Robust Influence Maximization in Social Networks"},"content":{"rendered":"
In\ufb02uence maximization is the problem of selecting top k seed nodes in a social network to maximize their in\ufb02uence coverage under certain in\ufb02uence diffusion models. In this paper, we propose a novel algorithm IRIE that integrates the advantages of in\ufb02uence ranking (IR) and in\ufb02uence estimation (IE) methods for in\ufb02uence maximization in both the independent cascade (IC) model and its extension IC-N that incorporates negative opinion propagations. Through extensive experiments, we demonstrate that IRIE matches the in\ufb02uence coverage of other algorithms while scales much better than all other algorithms. Moreover IRIE is much more robust and stable than other algorithms both in running time and memory usage for various density of networks and cascade size. It runs up to two orders of magnitude faster than other state-of-the-art algorithms such as PMIA for large networks with tens of millions of nodes and edges, while using only a fraction of memory.<\/p>\n","protected":false},"excerpt":{"rendered":"
In\ufb02uence maximization is the problem of selecting top k seed nodes in a social network to maximize their in\ufb02uence coverage under certain in\ufb02uence diffusion models. In this paper, we propose a novel algorithm IRIE that integrates the advantages of in\ufb02uence ranking (IR) and in\ufb02uence estimation (IE) methods for in\ufb02uence maximization in both the independent cascade […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13561,13559],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-246524","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-algorithms","msr-research-area-social-sciences","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2012-12","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Winner of the 10-Year Highest-Impact Paper Award at ICDM'2021","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"457491","msr_publicationurl":"http:\/\/arxiv.org\/abs\/1111.4795","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/weic-icdm2012_irie.pdf","id":"175185","title":"icdm2012_irie-pdf","label_id":"243132","label":0}],"msr_related_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/arxiv.org\/abs\/1111.4795","label_id":"243118","label":0}],"msr_attachments":[{"id":0,"url":"http:\/\/arxiv.org\/abs\/1111.4795"}],"msr-author-ordering":[{"type":"text","value":"Kyomin Jung","user_id":0,"rest_url":false},{"type":"text","value":"Wooram Heo","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Wei Chen","user_id":34795,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wei Chen"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[802999],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246524","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246524\/revisions"}],"predecessor-version":[{"id":524512,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/246524\/revisions\/524512"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=246524"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=246524"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=246524"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=246524"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=246524"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=246524"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=246524"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=246524"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=246524"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=246524"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=246524"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=246524"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=246524"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=246524"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=246524"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=246524"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}