{"id":254093,"date":"2016-07-13T00:00:56","date_gmt":"2016-07-13T07:00:56","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=254093"},"modified":"2019-01-11T01:56:56","modified_gmt":"2019-01-11T09:56:56","slug":"oblivious-multi-party-machine-learning-trusted-processors","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/oblivious-multi-party-machine-learning-trusted-processors\/","title":{"rendered":"Oblivious Multi-Party Machine Learning on Trusted Processors"},"content":{"rendered":"

Privacy-preserving multi-party machine learning allows multiple organizations to perform collaborative data analytics while guaranteeing the privacy of their individual datasets. Using trusted SGX-processors for this task yields high performance, but requires a careful selection, adaptation, and implementation of machine-learning algorithms to provably prevent the exploitation of any side channels induced by data-dependent access patterns.<\/p>\n

We propose data-oblivious machine learning algorithms for support vector machines, matrix factorization, neural networks, decision trees, and k-means clustering. We show that our efficient implementation based on Intel Skylake processors scales up to large, realistic datasets, with overheads several orders of magnitude lower than with previous approaches based on advanced cryptographic multi-party computation schemes.<\/p>\n","protected":false},"excerpt":{"rendered":"

Privacy-preserving multi-party machine learning allows multiple organizations to perform collaborative data analytics while guaranteeing the privacy of their individual datasets. Using trusted SGX-processors for this task yields high performance, but requires a careful selection, adaptation, and implementation of machine-learning algorithms to provably prevent the exploitation of any side channels induced by data-dependent access patterns. We […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-254093","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"USENIX","msr_edition":"","msr_affiliation":"","msr_published_date":"2016-7-13","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"254156","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/07\/paper.pdf","id":"254156","title":"paper","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Olya Ohrimenko","user_id":33166,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Olya Ohrimenko"},{"type":"user_nicename","value":"Felix Schuster","user_id":31804,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Felix Schuster"},{"type":"user_nicename","value":"C\u00e9dric Fournet","user_id":31819,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=C\u00e9dric Fournet"},{"type":"text","value":"Aastha Mehta","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sebastian Nowozin","user_id":33573,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sebastian Nowozin"},{"type":"user_nicename","value":"Kapil Vaswani","user_id":32487,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kapil Vaswani"},{"type":"user_nicename","value":"Manuel Costa","user_id":32794,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Manuel Costa"}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[559983,761911],"msr_project":[923382,648207],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":923382,"post_title":"Project Venice","post_name":"venice","post_type":"msr-project","post_date":"2023-03-24 09:06:03","post_modified":"2024-11-14 02:11:42","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/venice\/","post_excerpt":"The goal of Project Venice is to provide strong end-to-end protection against software side-channel attacks, with confidential cloud computing as its main use case.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/923382"}]}},{"ID":648207,"post_title":"Confidential AI","post_name":"confidential-ai","post_type":"msr-project","post_date":"2020-05-15 05:46:38","post_modified":"2023-02-15 01:10:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/confidential-ai\/","post_excerpt":"Our goal is to make Azure the most trustworthy cloud platform for AI. The platform we envisage offers confidentiality and integrity against privileged attackers including attacks on the code, data and hardware supply chains, performance close to that offered by GPUs, and programmability of state-of-the-art ML frameworks. The confidential AI platform will enable multiple entities to collaborate and train accurate models using sensitive data, and serve these models with assurance that their data and models…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/648207"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/254093"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/254093\/revisions"}],"predecessor-version":[{"id":526763,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/254093\/revisions\/526763"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=254093"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=254093"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=254093"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=254093"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=254093"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=254093"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=254093"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=254093"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=254093"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=254093"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=254093"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=254093"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=254093"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=254093"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=254093"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=254093"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}