{"id":267798,"date":"2014-07-29T02:50:14","date_gmt":"2014-07-29T09:50:14","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=267798"},"modified":"2018-10-16T19:56:43","modified_gmt":"2018-10-17T02:56:43","slug":"viewpoint-aware-representation-sketch-based-3d-model-retrieval","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/viewpoint-aware-representation-sketch-based-3d-model-retrieval\/","title":{"rendered":"Viewpoint-Aware Representation for Sketch-Based 3D Model Retrieval"},"content":{"rendered":"

We study the problem of sketch-based 3D model retrieval,
\nand propose a solution powered by a new query-to-model
\ndistance metric and a powerful feature descriptor based on
\nthe bag-of-features framework. The main idea of the proposed
\nquery-to-model distance metric is to represent a query sketch
\nusing a compact set of sample views (called basic views) of
\neach model, and to rank the models in ascending order of the
\nrepresentation errors. To better differentiate between relevant
\nand irrelevant models, the representation is constrained to be
\nessentially a combination of basic views with similar viewpoints.
\nIn another aspect, we propose a mid-level descriptor (called
\nBOF-JESC) which robustly characterizes the edge information
\nwithin junction-centered patches, to extract the salient shape
\nfeatures from sketches or model views. The combination of the
\nquery-to-model distance metric and the BOF-JESC descriptor
\nachieves effective results on two latest benchmark datasets<\/p>\n","protected":false},"excerpt":{"rendered":"

We study the problem of sketch-based 3D model retrieval, and propose a solution powered by a new query-to-model distance metric and a powerful feature descriptor based on the bag-of-features framework. The main idea of the proposed query-to-model distance metric is to represent a query sketch using a compact set of sample views (called basic views) […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-267798","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2014-07-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Signal Processing Letters","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"267801","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"09-2014-signal-processing-letters-3D-shape","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/07\/09-2014-signal-processing-letters-3D-shape.pdf","id":267801,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Changqing Zou","user_id":0,"rest_url":false},{"type":"text","value":"Changhu Wang","user_id":0,"rest_url":false},{"type":"text","value":"Yafei Wen","user_id":0,"rest_url":false},{"type":"text","value":"Lei Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Jiangzhuang Liu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170517],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":170517,"post_title":"MindFinder: Finding Images by Sketching","post_name":"mindfinder-finding-images-by-sketching","post_type":"msr-project","post_date":"2015-08-12 20:04:39","post_modified":"2017-05-31 11:14:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindfinder-finding-images-by-sketching\/","post_excerpt":"Sketch-based image search is a well-known and difficult problem, in which little progress has been made in the past decade in developing a large-scale and practical sketch-based search engine. We have revisited this problem and developed a scalable solution to sketch-based image search. The MindFinder system has been built by indexing more than 1.5 billion web images to enable efficient sketch-based image retrieval, and many creative applications can be expected to advance the state of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170517"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267798"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267798\/revisions"}],"predecessor-version":[{"id":513821,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267798\/revisions\/513821"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=267798"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=267798"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=267798"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=267798"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=267798"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=267798"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=267798"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=267798"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=267798"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=267798"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=267798"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=267798"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=267798"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=267798"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=267798"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=267798"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}