{"id":267825,"date":"2015-07-29T05:37:41","date_gmt":"2015-07-29T12:37:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=267825"},"modified":"2018-10-16T20:55:20","modified_gmt":"2018-10-17T03:55:20","slug":"building-effective-representations-sketch-recognition","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/building-effective-representations-sketch-recognition\/","title":{"rendered":"Building Effective Representations for Sketch Recognition"},"content":{"rendered":"

As the popularity of touch-screen devices, understanding
\na user\u2019s hand-drawn sketch has become an increasingly
\nimportant research topic in artificial intelligence
\nand computer vision. However, different from natural
\nimages, the hand-drawn sketches are often highly abstract,
\nwith sparse visual information and large intraclass
\nvariance, making the problem more challenging.
\nIn this work, we study how to build effective representations
\nfor sketch recognition. First, to capture
\nsaliency patterns of different scales and spatial arrangements,
\na Gabor-based low-level representation is proposed.
\nThen, based on this representation, to discovery
\nmore complex patterns in a sketch, a Hybrid Multilayer
\nSparse Coding (HMSC) model is proposed to learn midlevel
\nrepresentations. An improved dictionary learning
\nalgorithm is also leveraged in HMSC to reduce overfitting
\nto common but trivial patterns. Extensive experiments
\nshow that the proposed representations are highly
\ndiscriminative and lead to large improvements over the
\nstate of the arts.<\/p>\n","protected":false},"excerpt":{"rendered":"

As the popularity of touch-screen devices, understanding a user\u2019s hand-drawn sketch has become an increasingly important research topic in artificial intelligence and computer vision. However, different from natural images, the hand-drawn sketches are often highly abstract, with sparse visual information and large intraclass variance, making the problem more challenging. In this work, we study how […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-267825","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-07-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"267828","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"06-2015-aaai-hmsc_guo-(reduced!!!)","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/07\/06-2015-aaai-hmsc_guo-reduced.pdf","id":267828,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Jun Guo","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chw","user_id":31440,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chw"},{"type":"text","value":"Hongyang Chao","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171319],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171319,"post_title":"Sketch Recognition","post_name":"sketch-recognition","post_type":"msr-project","post_date":"2015-08-01 00:18:41","post_modified":"2017-06-16 12:55:53","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sketch-recognition\/","post_excerpt":"We built the Sketch2Tag system for hand-drawn sketch recognition. Due to large variations presented in hand-drawn sketches, most of existing work was limited to a particular domain or limited pre-defined classes. Different from existing work, Sketch2Tag is a general sketch recognition system, towards recognizing any semantically meaningful object that a child can recognize. This system enables a user to draw a sketch on the query panel, and then provides real-time recognition results.    ","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171319"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267825"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267825\/revisions"}],"predecessor-version":[{"id":531343,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267825\/revisions\/531343"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=267825"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=267825"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=267825"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=267825"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=267825"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=267825"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=267825"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=267825"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=267825"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=267825"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=267825"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=267825"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=267825"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=267825"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=267825"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=267825"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}