{"id":267843,"date":"2015-07-29T05:53:16","date_gmt":"2015-07-29T12:53:16","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=267843"},"modified":"2018-10-16T20:56:11","modified_gmt":"2018-10-17T03:56:11","slug":"sketch-based-image-retrieval-via-shape-words","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/sketch-based-image-retrieval-via-shape-words\/","title":{"rendered":"Sketch-based Image Retrieval via Shape Words"},"content":{"rendered":"
The explosive growth of touch screens has provided a good
\nplatform for sketch-based image retrieval. However, most
\nprevious works focused on low level descriptors of shapes
\nand sketches. In this paper, we try to step forward and
\npropose to leverage shape words descriptor for sketch-based
\nimage retrieval. First, the shape words are de ned and an
\ne cient algorithm is designed for shape words extraction.
\nThen we generalize the classic Chamfer Matching algorith-
\nm to address the shape words matching problem. Finally,
\na novel inverted index structure is proposed to make shape
\nwords representation scalable to large scale image databas-
\nes. Experimental results show that our method achieves
\ncompetitive accuracy but requires much less memory, e.g.,
\nless than 3% of memory storage of MindFinder. Due to its
\ncompetitive accuracy and low memory cost, our method can
\nscale up to much larger database.<\/p>\n","protected":false},"excerpt":{"rendered":"
The explosive growth of touch screens has provided a good platform for sketch-based image retrieval. However, most previous works focused on low level descriptors of shapes and sketches. In this paper, we try to step forward and propose to leverage shape words descriptor for sketch-based image retrieval. First, the shape words are de ned and […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562,13551,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-267843","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-research-area-graphics-and-multimedia","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-07-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"267852","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"03-2015-icmr-shapewords","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/07\/03-2015-icmr-shapewords.pdf","id":267852,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Changcheng Xiao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chw","user_id":31440,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chw"},{"type":"text","value":"Liqing Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"leizhang","user_id":32641,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=leizhang"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170517],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170517,"post_title":"MindFinder: Finding Images by Sketching","post_name":"mindfinder-finding-images-by-sketching","post_type":"msr-project","post_date":"2015-08-12 20:04:39","post_modified":"2017-05-31 11:14:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindfinder-finding-images-by-sketching\/","post_excerpt":"Sketch-based image search is a well-known and difficult problem, in which little progress has been made in the past decade in developing a large-scale and practical sketch-based search engine. We have revisited this problem and developed a scalable solution to sketch-based image search. The MindFinder system has been built by indexing more than 1.5 billion web images to enable efficient sketch-based image retrieval, and many creative applications can be expected to advance the state of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170517"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267843"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267843\/revisions"}],"predecessor-version":[{"id":531458,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/267843\/revisions\/531458"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=267843"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=267843"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=267843"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=267843"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=267843"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=267843"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=267843"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=267843"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=267843"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=267843"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=267843"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=267843"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=267843"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=267843"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=267843"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=267843"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}