{"id":271377,"date":"2016-08-04T16:36:13","date_gmt":"2016-08-04T23:36:13","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=271377"},"modified":"2018-10-16T21:06:03","modified_gmt":"2018-10-17T04:06:03","slug":"deep-semantic-preserving-ranking-based-hashing-image-retrieval","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/deep-semantic-preserving-ranking-based-hashing-image-retrieval\/","title":{"rendered":"Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval"},"content":{"rendered":"

Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of co-training for hashing, by jointly learning projections from image representations to hash codes and classification. Specifically, a novel deep semantic-preserving and ranking-based hashing (DSRH) architecture is presented, which consists of three components: a deep CNN for learning image representations, a hash stream of a binary mapping layer by evenly dividing the learnt representations into multiple bags and encoding each bag into one hash bit, and a classification stream. Meanwhile, our model is learnt under two constraints at the top loss layer of hash stream: a triplet ranking loss and orthogonality constraint. The former aims to preserve the relative similarity ordering in the triplets, while the latter makes different hash bit as independent as possible. We have conducted experiments on CIFAR-10 and NUS-WIDE image benchmarks, demonstrating that our approach can provide superior image search accuracy than other state-of-the-art hashing techniques.<\/p>\n","protected":false},"excerpt":{"rendered":"

Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of co-training for hashing, by jointly learning projections […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-271377","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"International Joint Conference on Artificial Intelligence (IJCAI)","msr_affiliation":"","msr_published_date":"2016-08-04","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"271380","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/08\/Deep-Semantic-Preserving-and-Ranking-Based-Hashing-for-Image-Retrieval.pdf","id":271380,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"tiyao","user_id":34069,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tiyao"},{"type":"text","value":"Fuchen Long","user_id":0,"rest_url":false},{"type":"user_nicename","value":"tmei","user_id":34188,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tmei"},{"type":"user_nicename","value":"yongrui","user_id":35040,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yongrui"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144916],"msr_project":[212095,212087],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":212095,"post_title":"Photo Story","post_name":"photo-story","post_type":"msr-project","post_date":"2016-01-25 19:33:26","post_modified":"2017-10-07 21:38:02","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/photo-story\/","post_excerpt":"The capability of managing personal photos is becoming crucial. In this work, we have attempted to solve the following pain points for mobile users: 1) intelligent photo tagging, best photo selection, event segmentation and album naming, 2) speech recognition and user intent parsing of time, location, people attributes and objects, 3) search by arbitrary queries. We first segment and categorize the unstructured photo streams into multiple semantic-related albums in an automatic way. Second, we analyze…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212095"}]}},{"ID":212087,"post_title":"Vision and Language","post_name":"video-and-language","post_type":"msr-project","post_date":"2016-01-14 20:03:50","post_modified":"2021-05-13 02:20:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/video-and-language\/","post_excerpt":"Automatically describing visual content with natural language is a fundamental challenge of computer vision and multimedia. Sequence learning (e.g., Recurrent Neural Networks), attention mechanism, memory networks,\u00a0etc.,\u00a0have attracted increasing attention on visual interpretation. In this project, we are focusing on the following topics related to the emerging topic of \"vision and language\": Image and video captioning, including MSR-VTT video to language grand challenge and datasets (http:\/\/ms-multimedia-challenge.com\/). Image and video commenting (conversation) Visual storytelling (e.g., generation of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212087"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/271377","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/271377\/revisions"}],"predecessor-version":[{"id":532851,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/271377\/revisions\/532851"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=271377"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=271377"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=271377"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=271377"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=271377"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=271377"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=271377"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=271377"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=271377"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=271377"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=271377"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=271377"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=271377"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=271377"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=271377"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=271377"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}