{"id":273903,"date":"2013-08-09T08:10:27","date_gmt":"2013-08-09T15:10:27","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=273903"},"modified":"2018-10-16T19:57:12","modified_gmt":"2018-10-17T02:57:12","slug":"towards-cross-domain-learning-for-social-video-popularity-prediction","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/towards-cross-domain-learning-for-social-video-popularity-prediction\/","title":{"rendered":"Towards Cross-Domain Learning for Social Video Popularity Prediction"},"content":{"rendered":"
Previous research on online media popularity prediction concluded that the rise in popularity of online videos maintains a conventional logarithmic distribution. However, recent studies have shown that a significant portion of online videos exhibit bursty\/sudden rise in popularity, which cannot be accounted for by video domain features alone. In this paper, we propose a novel transfer learning framework that utilizes knowledge from social streams (e.g., Twitter) to grasp sudden popularity bursts in online content. We develop a transfer learning algorithm that can learn topics from social streams allowing us to model the social prominence of video content<\/em> and improve popularity predictions in the video domain. Our transfer learning framework has the ability to scale with incoming stream of tweets, harnessing physical world event information in real-time. Using data comprising of 10.2 million tweets and 3.5 million YouTube videos, we show that social prominence of the video topic (context) is responsible for the sudden rise in its popularity where social trends have a ripple effect as they spread from the Twitter domain to the video domain. We envision that our cross-domain popularity prediction model will be substantially useful for various media applications that could not be previously solved by traditional multimedia techniques alone.<\/p>\n","protected":false},"excerpt":{"rendered":" Previous research on online media popularity prediction concluded that the rise in popularity of online videos maintains a conventional logarithmic distribution. However, recent studies have shown that a significant portion of online videos exhibit bursty\/sudden rise in popularity, which cannot be accounted for by video domain features alone. In this paper, we propose a novel […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13551],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-273903","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-graphics-and-multimedia","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-08-09","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Trans. on Multimedia","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"2015 IEEE Communications Society MMTC Best Journal Paper Award","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"273927","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Towards Cross-Domain Learning for Social Video Popularity Prediction","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/08\/Towards-Cross-Domain-Learning-for-Social-Video-Popularity-Prediction.pdf","id":273927,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Suman Deb Roy","user_id":0,"rest_url":false},{"type":"user_nicename","value":"tmei","user_id":34188,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tmei"},{"type":"user_nicename","value":"wezeng","user_id":34830,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=wezeng"},{"type":"text","value":"Shipeng Li","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144916],"msr_project":[239357],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":239357,"post_title":"Video Analysis","post_name":"video-analytics","post_type":"msr-project","post_date":"2016-06-16 19:35:23","post_modified":"2017-10-07 21:38:55","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/video-analytics\/","post_excerpt":"Video has become ubiquitous on the Internet, broadcasting channels, as well as that captured by personal devices. This has encouraged the development of advanced techniques to analyze the semantic video content for a wide variety of applications, such as video representation learning [CVPR 2017], video highlight detection [CVPR 2016], video summarization, object detection, action recognition [CVPR 2016, ICMR 2016], semantic segmentation, and so on. Highlight detection The emergence of wearable devices such as portable cameras…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/239357"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/273903"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/273903\/revisions"}],"predecessor-version":[{"id":514580,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/273903\/revisions\/514580"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=273903"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=273903"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=273903"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=273903"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=273903"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=273903"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=273903"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=273903"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=273903"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=273903"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=273903"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=273903"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=273903"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=273903"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=273903"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=273903"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}