{"id":277758,"date":"2016-08-16T15:50:26","date_gmt":"2016-08-16T22:50:26","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=277758"},"modified":"2018-10-16T21:22:40","modified_gmt":"2018-10-17T04:22:40","slug":"semi-supervised-training-deep-learning-acoustic-model","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/semi-supervised-training-deep-learning-acoustic-model\/","title":{"rendered":"Semi-Supervised Training in Deep Learning Acoustic Model"},"content":{"rendered":"

We studied the semi-supervised training in a fully connected deep neural network (DNN), unfolded recurrent neural network (RNN), and long short-term memory recurrent neural network (LSTM-RNN) with respect to the transcription quality, the importance data sampling, and the training data amount. We found that DNN, unfolded RNN, and LSTM-RNN are increasingly more sensitive to labeling errors. For example, with the simulated erroneous training transcription at 5%, 10%, or 15% word error rate (WER) level, the semi-supervised DNN yields 2.37%, 4.84%, or 7.46% relative WER increase against the baseline model trained with the perfect transcription; in comparison, the corresponding WER increase is 2.53%, 4.89%, or 8.85% in an unfolded RNN and 4.47%, 9.38%, or 14.01% in an LSTM-RNN. We further found that the importance sampling has similar impact on all three models with 2~3% relative WER reduction comparing to the random sampling. Lastly, we compared the modeling capability with increased training data. Experimental results suggested that LSTM-RNN can benefit more from enlarged training data comparing to unfolded RNN and DNN.<\/p>\n

We trained a semi-supervised LSTM-RNN using 2600 hr transcribed and 10000 hr untranscribed data on a mobile speech task. The semi-supervised LSTM-RNN yields 7.9\\% relative WER reduction against the supervised baseline.<\/p>\n","protected":false},"excerpt":{"rendered":"

We studied the semi-supervised training in a fully connected deep neural network (DNN), unfolded recurrent neural network (RNN), and long short-term memory recurrent neural network (LSTM-RNN) with respect to the transcription quality, the importance data sampling, and the training data amount. We found that DNN, unfolded RNN, and LSTM-RNN are increasingly more sensitive to labeling […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-277758","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Interspeech 2016","msr_affiliation":"","msr_published_date":"2016-09-08","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"277761","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"INTERSPEECH2016-Semi-Supervised Training in Deep Learning Acoustic Model-Full","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/08\/INTERSPEECH2016-Semi-Supervised-Training-in-Deep-Learning-Acoustic-Model-Full-1.pdf","id":277761,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"yanhuang","user_id":34965,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yanhuang"},{"type":"text","value":"yongqiang wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"ygong","user_id":34994,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ygong"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144911],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/277758","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/277758\/revisions"}],"predecessor-version":[{"id":535365,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/277758\/revisions\/535365"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=277758"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=277758"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=277758"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=277758"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=277758"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=277758"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=277758"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=277758"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=277758"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=277758"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=277758"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=277758"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=277758"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=277758"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=277758"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=277758"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}