{"id":317225,"date":"2016-11-07T11:24:55","date_gmt":"2016-11-07T19:24:55","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=317225"},"modified":"2018-10-16T20:07:42","modified_gmt":"2018-10-17T03:07:42","slug":"myth-folk-theorem","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/myth-folk-theorem\/","title":{"rendered":"The Myth of the Folk Theorem"},"content":{"rendered":"
A well-known result in game theory known as \u201cthe Folk Theorem\u201d suggests that finding Nash equilibria in repeated games should be easier than in one-shot games. In contrast, we show that the problem of finding any (approximate) Nash equilibrium for a three-player infinitely repeated game is computationally intractable (even when all payoffs are in {\u22121, 0,\u22121}), unless all of PPAD can be solved in randomized polynomial time. This is done by showing that finding Nash equilibria of (k + 1)-player infinitely-repeated games is as hard as finding Nash equilibria of k-player one-shot games, for which PPAD-hardness is known (Daskalakis, Goldberg and Papadimitriou, 2006; Chen, Deng and Teng, 2006; Chen, Teng and Valiant, 2007). This also explains why no computationally-efficient learning dynamics, such as the \u201cno regret\u201d algorithms, can be rational (in general games with three or more players) in the sense that, when one\u2019s opponents use such a strategy, it is not in general a best reply to follow suit.<\/p>\n","protected":false},"excerpt":{"rendered":"
A well-known result in game theory known as \u201cthe Folk Theorem\u201d suggests that finding Nash equilibria in repeated games should be easier than in one-shot games. In contrast, we show that the problem of finding any (approximate) Nash equilibrium for a three-player infinitely repeated game is computationally intractable (even when all payoffs are in {\u22121, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-317225","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"ACM Press","msr_edition":"STOC '08 Proceedings of the fortieth annual ACM symposium on Theory of computing","msr_affiliation":"","msr_published_date":"2008-05-17","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"365-372","msr_chapter":"","msr_isbn":"978-1-60558-047-0","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"459531","msr_publicationurl":"","msr_doi":"10.1145\/1374376.1374429","msr_publication_uploader":[{"type":"file","title":"the-myth-of-the-folk-theorem","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2016\/11\/The-Myth-of-the-Folk-Theorem.pdf","id":459531,"label_id":0},{"type":"doi","title":"10.1145\/1374376.1374429","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"borgs","user_id":31278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=borgs"},{"type":"user_nicename","value":"jchayes","user_id":32200,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jchayes"},{"type":"user_nicename","value":"nicimm","user_id":33086,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nicimm"},{"type":"user_nicename","value":"adum","user_id":30834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adum"},{"type":"text","value":"Vahab Mirrokni","user_id":0,"rest_url":false},{"type":"text","value":"Christos Papadimitriou","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317225"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317225\/revisions"}],"predecessor-version":[{"id":522967,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317225\/revisions\/522967"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=317225"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=317225"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=317225"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=317225"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=317225"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=317225"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=317225"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=317225"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=317225"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=317225"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=317225"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=317225"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=317225"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=317225"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=317225"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=317225"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}