{"id":317753,"date":"2016-11-07T15:44:51","date_gmt":"2016-11-07T23:44:51","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=317753"},"modified":"2018-10-16T20:09:35","modified_gmt":"2018-10-17T03:09:35","slug":"using-machine-learning-support-pedagogy-arts","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/using-machine-learning-support-pedagogy-arts\/","title":{"rendered":"Using Machine Learning to Support Pedagogy in the Arts (2013)"},"content":{"rendered":"
Teaching artistic skills to children presents a unique challenge: High-level creative and social elements of an artistic discipline are often the most engaging and the most likely to sustain student enthusiasm, but these skills rely on low-level sensorimotor capabilities, and in some cases rote knowledge, which are often tedious to develop. We hypothesize that computer-based learning can play a critical role in connecting \u2018\u2018bottom-up\u2019\u2019 (sensorimotor-first) learning in the arts to \u2018\u2018top-down\u2019\u2019 (creativity-first) learning, by employing machine learning and artificial intelligence techniques that can play the role of the sensorimotor expert. This approach allows learners to experience components of higher-level creativity and social interaction even before developing the prerequisite sensorimotor skills or academic knowledge.<\/p>\n","protected":false},"excerpt":{"rendered":"
Teaching artistic skills to children presents a unique challenge: High-level creative and social elements of an artistic discipline are often the most engaging and the most likely to sustain student enthusiasm, but these skills rely on low-level sensorimotor capabilities, and in some cases rote knowledge, which are often tedious to develop. We hypothesize that computer-based […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13554,13553],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-317753","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-computer-interaction","msr-research-area-medical-health-genomics","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-12-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"1631\u20131635","msr_chapter":"","msr_isbn":"","msr_journal":"Personal and Ubiquitous Computing","msr_volume":"17","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"317762","msr_publicationurl":"","msr_doi":"10.1007\/s00779-012-0526-1","msr_publication_uploader":[{"type":"file","title":"morris_fiebrink_ml_pedagogy_puc_2012","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/11\/Morris_Fiebrink_ML_Pedagogy_PUC_2012.pdf","id":317762,"label_id":0},{"type":"doi","title":"10.1007\/s00779-012-0526-1","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"dan","user_id":31522,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dan"},{"type":"text","value":"Rebecca Fiebrink","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[327332],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":327332,"post_title":"Computational Tools for Music","post_name":"computational-tools-for-music","post_type":"msr-project","post_date":"2016-11-27 16:38:01","post_modified":"2021-05-09 12:03:16","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/computational-tools-for-music\/","post_excerpt":"Work in this area seeks to use computational tools to enable musical creativity, in particular to give novices a variety of new approaches to experience musical creativity.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/327332"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317753","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317753\/revisions"}],"predecessor-version":[{"id":523127,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/317753\/revisions\/523127"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=317753"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=317753"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=317753"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=317753"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=317753"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=317753"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=317753"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=317753"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=317753"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=317753"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=317753"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=317753"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=317753"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=317753"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=317753"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=317753"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}