{"id":318653,"date":"2016-11-08T18:52:30","date_gmt":"2016-11-09T02:52:30","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=318653"},"modified":"2018-10-16T20:13:55","modified_gmt":"2018-10-17T03:13:55","slug":"finite-size-scaling-potts-models-long-cylinders","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/finite-size-scaling-potts-models-long-cylinders\/","title":{"rendered":"Finite-Size Scaling for Potts Models in Long Cylinders"},"content":{"rendered":"
Using a recently developed method to rigorously control the finite-size behaviour in long cylinders near first-order phase transitions, I calculate the finite-size scaling of the first q+1 eigenvalues of the transfer matrix of the q states Potts model in a d dimensional periodic box of volume L \u00d7 . . . \u00d7 L \u00d7 t (assuming that d \u2265 2 and that q is sufficiently large). I find two simple eigenvalues \u03bb\u00b1 corresponding to the trivial representation of the global symmetry and an q \u2212 1 fold degenerate eigenvalue \u03bb\u22a5 corresponding to the remaining irreducible representations of the global symmetry group. The finite-size scaling of the gap \u03be\u22121(L, \u03b2) = log(\u03bb+\/\u03bb\u22a5) and of the gap \u03be\u22121 sym(L, \u03b2) = log(\u03bb+\/\u03bb\u2212) in the symmetric subspace, and their relation to the surface tension, as well as the finite-size scaling of the internal energy Ecyl(L, \u03b2) = \u2212L\u2212(d\u22121)d log \u03bb+\/d\u03b2 are discussed. As a final application, I discuss the finite-size scaling of the derivative of \u03be(L, \u03b2). I prove that 1\/\u03bd(L) := log[\u2212Ld\u03be(L, \u03b2)\/d\u03b2]\u03b2=\u03b2t(L)\/ log L converges to the renormalization group eigenvalue yT = d, if \u03b2t(L) is chosen as the point where \u03be\u22121 sym(L, \u03b2) is minimal. I also propose other definitions of a finite volume exponent \u03bd(L) which should be more suitable for numerical considerations.<\/p>\n","protected":false},"excerpt":{"rendered":"
Using a recently developed method to rigorously control the finite-size behaviour in long cylinders near first-order phase transitions, I calculate the finite-size scaling of the first q+1 eigenvalues of the transfer matrix of the q states Potts model in a d dimensional periodic box of volume L \u00d7 . . . \u00d7 L \u00d7 t […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-318653","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Nucl. Phys.","msr_affiliation":"","msr_published_date":"1992-02-05","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"605-645","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"459642","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Finite-Size Scaling for Potts Models in Long Cylinders","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2016\/11\/Finite-Size-Scaling-for-Potts-Models-in-Long-Cylinders.pdf","id":459642,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"borgs","user_id":31278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=borgs"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318653"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318653\/revisions"}],"predecessor-version":[{"id":524856,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318653\/revisions\/524856"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=318653"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=318653"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=318653"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=318653"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=318653"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=318653"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=318653"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=318653"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=318653"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=318653"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=318653"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=318653"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=318653"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=318653"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=318653"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=318653"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}