{"id":318989,"date":"2016-11-14T14:43:37","date_gmt":"2016-11-14T22:43:37","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=318989"},"modified":"2018-10-16T20:14:27","modified_gmt":"2018-10-17T03:14:27","slug":"unifying-hierarchy-valuations-complements-substitutes","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/unifying-hierarchy-valuations-complements-substitutes\/","title":{"rendered":"A Unifying Hierarchy of Valuations with Complements and Substitutes"},"content":{"rendered":"
We introduce a new hierarchy over monotone set functions, that we refer to as MPH<\/em> (Maximum over Positive Hypergraphs). Levels of the hierarchy correspond to the degree of complementarity in a given function. The highest level of the hierarchy, MPH-m<\/em> (where m is the total number of items) captures all monotone functions. The lowest level, MPH-1<\/em>, captures all monotone submodular functions, and more generally, the class of functions known as X OS<\/em>. Every monotone function that has a positive hypergraph representation of rank k<\/em> (in the sense defined by Abraham, Babaioff, Dughmi and Roughgarden [EC 2012]) is in MPH-k<\/em>. Every monotone function that has supermodular degree k<\/em> (in the sense defined by Feige and Izsak [ITCS 2013]) is in MPH-(k + 1)<\/em>. In both cases, the converse direction does not hold, even in an approximate sense. We present additional results that demonstrate the expressiveness power of MPH-k<\/em>. One can obtain good approximation ratios for some natural optimization problems, provided that functions are required to lie in low levels of the MPH<\/em> hierarchy. We present two such applications. One shows that the maximum welfare problem can be approximated within a ratio of k + 1<\/em> if all players hold valuation functions in MPH-k<\/em>. The other is an upper bound of 2k<\/em> on the price of anarchy of simultaneous first price auctions. Being in MPH-k<\/em> can be shown to involve two requirements \u2013 one is monotonicity and the other is a certain requirement that we refer to as P LE<\/em> (Positive Lower Envelope). Removing the monotonicity requirement, one obtains the PLE<\/em> hierarchy over all non-negative set functions (whether monotone or not), which can be fertile ground for further research.<\/p>\n","protected":false},"excerpt":{"rendered":" We introduce a new hierarchy over monotone set functions, that we refer to as MPH (Maximum over Positive Hypergraphs). Levels of the hierarchy correspond to the degree of complementarity in a given function. The highest level of the hierarchy, MPH-m (where m is the total number of items) captures all monotone functions. The lowest level, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13548,13546],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-318989","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-economics","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI) 2015","msr_affiliation":"","msr_published_date":"2015-01-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/arxiv.org\/abs\/1408.1211","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/arxiv.org\/abs\/1408.1211","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/arxiv.org\/abs\/1408.1211"}],"msr-author-ordering":[{"type":"text","value":"Uriel Feige","user_id":0,"rest_url":false},{"type":"text","value":"Michal Feldman","user_id":0,"rest_url":false},{"type":"user_nicename","value":"nicimm","user_id":33086,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nicimm"},{"type":"text","value":"Rani Izsak","user_id":0,"rest_url":false},{"type":"user_nicename","value":"brlucier","user_id":31303,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=brlucier"},{"type":"user_nicename","value":"vasy","user_id":34499,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=vasy"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318989"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318989\/revisions"}],"predecessor-version":[{"id":525039,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/318989\/revisions\/525039"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=318989"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=318989"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=318989"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=318989"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=318989"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=318989"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=318989"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=318989"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=318989"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=318989"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=318989"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=318989"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=318989"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=318989"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=318989"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=318989"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}