{"id":324944,"date":"2016-11-20T20:24:41","date_gmt":"2016-11-21T04:24:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=324944"},"modified":"2018-10-16T20:54:19","modified_gmt":"2018-10-17T03:54:19","slug":"near-optimal-multi-unit-auctions-ordered-bidders","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/near-optimal-multi-unit-auctions-ordered-bidders\/","title":{"rendered":"Near-optimal multi-unit auctions with ordered bidders"},"content":{"rendered":"
\n
\n
\n
\n
\n

We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector to the monotone price benchmark, the maximum revenue that can be obtained from a bid vector using supply-respecting prices that are nonincreasing in the bidder ordering and bounded above by the second-highest bid. As a consequence, our auctions are simultaneously near-optimal in a wide range of Bayesian multi-unit environments.<\/p>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid vector to the monotone price benchmark, the maximum revenue that can be obtained from a bid vector using supply-respecting prices that are nonincreasing in the bidder […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-324944","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"EC '13 Proceedings of the fourteenth ACM conference on Electronic commerce","msr_affiliation":"","msr_published_date":"2013-06-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=2482555&CFID=693372782&CFTOKEN=84336053","msr_doi":"10.1145\/2482540.2482555","msr_publication_uploader":[{"type":"url","title":"http:\/\/dl.acm.org\/citation.cfm?id=2482555&CFID=693372782&CFTOKEN=84336053","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1145\/2482540.2482555","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=2482555&CFID=693372782&CFTOKEN=84336053"}],"msr-author-ordering":[{"type":"text","value":"Sayan Bhattacharya","user_id":0,"rest_url":false},{"type":"text","value":"Elias Koutsoupias","user_id":0,"rest_url":false},{"type":"user_nicename","value":"jakul","user_id":32147,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jakul"},{"type":"text","value":"Stefano Leonardi","user_id":0,"rest_url":false},{"type":"text","value":"Tim Roughgarden","user_id":0,"rest_url":false},{"type":"text","value":"Xiaoming Xu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324944"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324944\/revisions"}],"predecessor-version":[{"id":531211,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324944\/revisions\/531211"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=324944"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=324944"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=324944"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=324944"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=324944"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=324944"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=324944"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=324944"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=324944"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=324944"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=324944"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=324944"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=324944"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=324944"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=324944"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=324944"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}