{"id":324947,"date":"2016-11-20T20:28:38","date_gmt":"2016-11-21T04:28:38","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=324947"},"modified":"2018-10-16T20:54:34","modified_gmt":"2018-10-17T03:54:34","slug":"online-non-clairvoyant-scheduling-simultaneously-minimize-convex-functions","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/online-non-clairvoyant-scheduling-simultaneously-minimize-convex-functions\/","title":{"rendered":"Online Non-clairvoyant Scheduling to Simultaneously Minimize All Convex Functions"},"content":{"rendered":"

We consider scheduling jobs online to minimize the objective \u2211\u2009 i<\/em>\u2009\u2208\u2009[n<\/em>]<\/sub> w<\/em> i<\/em><\/sub>g<\/em>(C<\/em> i<\/em> <\/sub>\u2009\u2212\u2009r<\/em> i<\/em> <\/sub>), where w<\/em> i<\/em> <\/sub>is the weight of job i<\/em>, r<\/em> i<\/em> <\/sub>is its release time, C<\/em> i<\/em> <\/sub>is its completion time and g<\/em> is any non-decreasing convex function. Previously, it was known that the clairvoyant algorithm Highest-Density-First (HDF) is (2\u2009+\u2009\u03b5<\/em>)-speed O<\/em>(1)-competitive for this objective on a single machine for any fixed 0\u2009<\u2009\u03b5<\/em>\u2009<\u20091 [1]. We show the first non-trivial results for this problem when\u00a0g<\/em> is not concave and the algorithm must be non-clairvoyant<\/em>. More specifically, our results include:<\/p>\n

\n
\n
    \n
  • \n

    A (2\u2009+\u2009\u03b5<\/em>)-speed O<\/em>(1)-competitive non-clairovyant algorithm on a single machine for all non-decreasing convex\u00a0g<\/em>, matching the performance of HDF for any fixed 0\u2009<\u2009\u03b5<\/em>\u2009<\u20091.<\/p>\n<\/li>\n

  • \n

    A (3\u2009+\u2009\u03b5<\/em>)-speed O<\/em>(1)-competitive non-clairovyant algorithm on multiple identical machines for all non-decreasing convex\u00a0g<\/em> for any fixed 0\u2009<\u2009\u03b5<\/em>\u2009<\u20091.<\/p>\n<\/li>\n<\/ul>\n<\/div>\n<\/div>\n

    Our positive result on multiple machines is the first non-trivial one even when the algorithm is clairvoyant. Interestingly, all performance guarantees above hold for all non-decreasing convex functions g<\/em> simultaneously<\/em>. We supplement our positive results by showing any algorithm that is oblivious to\u00a0g<\/em> is not\u00a0O<\/em>(1)-competitive with speed less than\u00a02 on a single machine. Further, any non-clairvoyent algorithm that knows the function\u00a0g<\/em> cannot be\u00a0O<\/em>(1)-competitive with speed less than\u00a02<\/mn><\/msqrt><\/math>\">2<\/span><\/span>\u2013\u221a<\/span><\/span><\/span>2<\/span><\/span><\/span> on a single machine or speed less than\u00a02<\/mn>−<\/mo>1<\/mn>m<\/mi><\/mfrac><\/math>\">2<\/span>\u2212<\/span>1<\/span>m<\/span><\/span><\/span><\/span>2\u22121m<\/span><\/span><\/span> on\u00a0m<\/em> identical machines.<\/p>\n","protected":false},"excerpt":{"rendered":"

    We consider scheduling jobs online to minimize the objective \u2211\u2009 i\u2009\u2208\u2009[n] w ig(C i \u2009\u2212\u2009r i ), where w i is the weight of job i, r i is its release time, C i is its completion time and g is any non-decreasing convex function. Previously, it was known that the clairvoyant algorithm Highest-Density-First (HDF) […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-324947","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"Springer Berlin Heidelberg","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-08-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/link.springer.com\/chapter\/10.1007%2F978-3-642-40328-6_11","msr_doi":"10.1007\/978-3-642-40328-6_11","msr_publication_uploader":[{"type":"url","title":"http:\/\/link.springer.com\/chapter\/10.1007%2F978-3-642-40328-6_11","viewUrl":false,"id":false,"label_id":0},{"type":"doi","title":"10.1007\/978-3-642-40328-6_11","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/link.springer.com\/chapter\/10.1007%2F978-3-642-40328-6_11"}],"msr-author-ordering":[{"type":"text","value":"Kyle Fox","user_id":0,"rest_url":false},{"type":"text","value":"Sungjin Im","user_id":0,"rest_url":false},{"type":"user_nicename","value":"jakul","user_id":32147,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jakul"},{"type":"text","value":"Benjamin Moseley","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324947"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324947\/revisions"}],"predecessor-version":[{"id":531239,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/324947\/revisions\/531239"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=324947"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=324947"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=324947"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=324947"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=324947"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=324947"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=324947"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=324947"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=324947"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=324947"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=324947"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=324947"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=324947"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=324947"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=324947"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=324947"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}