(opens in new tab)<\/span><\/a> under a “Microsoft Research License” to facilitate future research.<\/p>\n","protected":false},"excerpt":{"rendered":"Traditional equi-join relies solely on string equality comparisons to perform joins. However, in scenarios such as ad-hoc data analysis in spreadsheets, users increasingly need to join tables whose join-columns are from the same semantic domain but use different textual representations, for which transformations are needed before equi-join can be performed. We develop an Auto-Join system […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-329798","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-5-31","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"371306","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/12\/autojoin-fullversion.pdf","id":"371306","title":"autojoin-fullversion","label_id":"243109","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/12\/WebTableBenchmark.zip","id":"372380","title":"WebTableBenchmark","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":372380,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/12\/WebTableBenchmark.zip"},{"id":371306,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/12\/autojoin-fullversion.pdf"}],"msr-author-ordering":[{"type":"text","value":"Erkang Zhu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yeye He","user_id":34992,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yeye He"},{"type":"user_nicename","value":"Surajit Chaudhuri","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Surajit Chaudhuri"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[967218,169513],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":967218,"post_title":"Self-service Data Preparation","post_name":"self-service-data-preparation","post_type":"msr-project","post_date":"2023-11-08 14:36:00","post_modified":"2023-11-18 10:15:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/self-service-data-preparation\/","post_excerpt":"It is often cited that data scientists spend a significant portion of their time (up to 80%), cleaning and preparing data. For less-technical users, who may be less proficient in writing code (e.g., in Excel, Power-BI and Tableau), the tasks of preparing and cleaning data are not just time-consuming, but also technically challenging. In the \"Self-service Data Preparation\" project, our goal is to develop technologies that can automate common data-preparation tasks, in the context of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/967218"}]}},{"ID":169513,"post_title":"Data Cleaning","post_name":"data-cleaning","post_type":"msr-project","post_date":"2002-07-01 16:21:12","post_modified":"2017-06-06 10:55:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-cleaning\/","post_excerpt":"Poor data quality is a well-known problem in data warehouses that arises for a variety of reasons such as data entry errors and differences in data representation among data sources. For example, one source may use abbreviated state names while another source may use fully expanded state names. However, high quality data is essential for accurate data analysis. Data cleaning is the process of detecting and correcting errors and inconsistencies in data. Goal Typical data…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169513"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/329798","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":6,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/329798\/revisions"}],"predecessor-version":[{"id":828226,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/329798\/revisions\/828226"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=329798"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=329798"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=329798"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=329798"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=329798"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=329798"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=329798"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=329798"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=329798"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=329798"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=329798"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=329798"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=329798"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=329798"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=329798"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=329798"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}