{"id":331316,"date":"2016-12-02T19:54:37","date_gmt":"2016-12-03T03:54:37","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=331316"},"modified":"2021-03-24T19:01:17","modified_gmt":"2021-03-25T02:01:17","slug":"joint-named-entity-recognition-disambiguation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/joint-named-entity-recognition-disambiguation\/","title":{"rendered":"Joint Named Entity Recognition and Disambiguation"},"content":{"rendered":"
Extracting named entities in text and linking extracted names to a given knowledge base are fundamental tasks in applications for text understanding. Existing systems typically run a named entity recognition (NER) model to extract entity names first, then run an entity linking model to link extracted names to a knowledge base. NER and linking models are usually trained separately, and the mutual dependency between the two tasks is ignored. We propose JERL, Joint Entity Recognition and Linking, to jointly model NER and linking tasks and capture the mutual dependency between them. It allows the information from each task to improve the performance of the other. To the best of our knowledge, JERL is the first model to jointly optimize NER and linking tasks together completely. In experiments on the CoNLL\u201903\/AIDA data set, JERL outperforms state-of-art NER and linking systems, and we find improvements of 0.4% absolute F1 for NER on CoNLL\u201903, and 0.36% absolute precision@1 for linking on AIDA.<\/p>\n","protected":false},"excerpt":{"rendered":"
Extracting named entities in text and linking extracted names to a given knowledge base are fundamental tasks in applications for text understanding. Existing systems typically run a named entity recognition (NER) model to extract entity names first, then run an entity linking model to link extracted names to a knowledge base. NER and linking models […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-331316","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-9-17","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/aclweb.org\/anthology\/D\/D15\/D15-1104.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclweb.org\/anthology\/D\/D15\/D15-1104.pdf","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/aclweb.org\/anthology\/D\/D15\/D15-1104.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Gang Luo","user_id":31889,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Gang Luo"},{"type":"user_nicename","value":"Xiaojiang Huang","user_id":34883,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiaojiang Huang"},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"},{"type":"user_nicename","value":"Zaiqing Nie","user_id":35151,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zaiqing Nie"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[717721,714646],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":717721,"post_title":"ezPitch: Connecting Salespersons and Customers through Relevant News","post_name":"ezpitch-connecting-salespersons-and-customers-through-relevant-news","post_type":"msr-project","post_date":"2021-01-19 08:25:06","post_modified":"2021-01-19 08:28:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ezpitch-connecting-salespersons-and-customers-through-relevant-news\/","post_excerpt":"The goal of ezPitch is connecting salespersons and customers through relevant news. Why is this important? In the daily work, the sales persons need to search, track and explore the related news about customers before talking to them. For example, if there is management change in the customer\u2019s company. The sales person may need to find a way to re-build the relationship with the new leadership. If the customer\u2019s company announces an earnings report which…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/717721"}]}},{"ID":714646,"post_title":"VERT: Versatile Entity Recognition & Disambiguation Toolkit","post_name":"vert-versatile-entity-recognition-disambiguation-toolkit","post_type":"msr-project","post_date":"2020-12-30 02:54:35","post_modified":"2021-10-13 21:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/vert-versatile-entity-recognition-disambiguation-toolkit\/","post_excerpt":"While knowledge about entities is a key building block in the mentioned systems, creating effective\/efficient models for real-world scenarios remains a challenge (tech\/data\/real workloads). Based on such needs, we've created VERT - a Versatile Entity Recognition & Disambiguation Toolkit. VERT is a pragmatic toolkit that combines rules and ML, offering both powerful pretrained models for core entity types (recognition and linking) and the easy creation of custom models. Custom models use our deep learning-based NER\/EL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/714646"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/331316","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/331316\/revisions"}],"predecessor-version":[{"id":542749,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/331316\/revisions\/542749"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=331316"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=331316"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=331316"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=331316"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=331316"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=331316"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=331316"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=331316"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=331316"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=331316"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=331316"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=331316"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=331316"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=331316"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=331316"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=331316"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}