{"id":339350,"date":"2016-12-20T10:49:45","date_gmt":"2016-12-20T18:49:45","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=339350"},"modified":"2018-10-16T21:11:51","modified_gmt":"2018-10-17T04:11:51","slug":"representing-permutations-moves","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/representing-permutations-moves\/","title":{"rendered":"Representing Permutations with Few Moves"},"content":{"rendered":"

Consider a finite sequence of permutations of the elements 1, . . . , n<\/em>, with the property that each element changes its position by at most 1 from any permutation to the next. We call such a sequence a tangle<\/em>, and we define a move<\/em> of element i<\/em> to be a maximal subsequence of at least two consecutive permutations during which its positions form an arithmetic progression of common difference +1 or \u22121. We prove that for any initial and final permutations, there is a tangle connecting them in which each element makes at most 5 moves, and another in which the total number of moves is at most 4n<\/em>. On the other hand, there exist permutations that require at least 3 moves for some element, and at least 2n<\/em> \u2212 2 moves in total. If we further require that every pair of elements exchange positions at most once, then any two permutations can be connected by a tangle with at most O(log n<\/em>) moves per element, but we do not know whether this can be reduced to O(1) per element, or to O(n<\/em>) in total. A key tool is the introduction of certain restricted classes of tangle that perform pattern-avoiding permutations.<\/p>\n","protected":false},"excerpt":{"rendered":"

Consider a finite sequence of permutations of the elements 1, . . . , n, with the property that each element changes its position by at most 1 from any permutation to the next. We call such a sequence a tangle, and we define a move of element i to be a maximal subsequence of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13546],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-339350","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"Cornell University Library","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-08-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"339353","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1508.03674","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"tangle2","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/12\/tangle2.pdf","id":339353,"label_id":0},{"type":"url","title":"https:\/\/arxiv.org\/abs\/1508.03674","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1508.03674"}],"msr-author-ordering":[{"type":"text","value":"Sergey Bereg","user_id":0,"rest_url":false},{"type":"user_nicename","value":"holroyd","user_id":32020,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=holroyd"},{"type":"user_nicename","value":"levnach","user_id":32653,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=levnach"},{"type":"text","value":"Sergey Pupyrev","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/339350"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/339350\/revisions"}],"predecessor-version":[{"id":533727,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/339350\/revisions\/533727"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=339350"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=339350"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=339350"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=339350"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=339350"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=339350"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=339350"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=339350"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=339350"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=339350"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=339350"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=339350"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=339350"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=339350"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=339350"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=339350"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}