{"id":346982,"date":"2017-01-05T12:15:39","date_gmt":"2017-01-05T20:15:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=346982"},"modified":"2020-06-04T17:33:37","modified_gmt":"2020-06-05T00:33:37","slug":"ultrasound-based-gesture-recognition-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/ultrasound-based-gesture-recognition-2\/","title":{"rendered":"Ultrasound-based Gesture Recognition"},"content":{"rendered":"
In this study, we explore the possibility of recognizing hand gestures using ultrasonic depth imaging. The ultrasonic device consists of a single piezoelectric transducer and an 8-element microphone array. Using carefully designed transmit pulse, and a combination of beamforming, matched filtering, and cross-correlation methods, we construct ultrasound images with depth and intensity pixels. Thereafter, we use a combined Convolutional (CNN) and Long Short-Term Memory (LSTM) network to recognize gestures from the ultrasound images. We report gesture recognition accuracies in the range 64.5-96.9%, based on the number of gestures to be recognized, and show that ultrasound sensors have the potential to become low power, low computation, and low cost alternatives to existing optical sensors.<\/p>\n","protected":false},"excerpt":{"rendered":"
In this study, we explore the possibility of recognizing hand gestures using ultrasonic depth imaging. The ultrasonic device consists of a single piezoelectric transducer and an 8-element microphone array. Using carefully designed transmit pulse, and a combination of beamforming, matched filtering, and cross-correlation methods, we construct ultrasound images with depth and intensity pixels. Thereafter, we […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,243062,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-346982","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"IEEE - Institute of Electrical and Electronics Engineers","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-3-7","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"372356","msr_publicationurl":"http:\/\/www.ieee-icassp2017.org\/program.html","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/01\/DasTashevShoaib_ICASSP2017.pdf","id":"372356","title":"DasTashevShoaib_ICASSP2017","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/www.ieee-icassp2017.org\/program.html","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/www.ieee-icassp2017.org\/program.html"}],"msr-author-ordering":[{"type":"text","value":"Amit Das","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ivan Tashev","user_id":32127,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ivan Tashev"},{"type":"user_nicename","value":"Shuayb Zarar","user_id":36563,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shuayb Zarar"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144923],"msr_project":[558039,430830],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":558039,"post_title":"Audio Devices","post_name":"audio-devices","post_type":"msr-project","post_date":"2019-01-02 20:14:06","post_modified":"2023-01-13 13:31:43","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/audio-devices\/","post_excerpt":"Our research explores audio devices that contain one or more microphones and\/or one or more loudspeakers, and which support audible audio or ultrasound waves.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/558039"}]}},{"ID":430830,"post_title":"Pose Tracking with Wearable and Ambient Devices","post_name":"wearable-devices","post_type":"msr-project","post_date":"2017-10-05 10:45:45","post_modified":"2020-06-12 11:20:27","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/wearable-devices\/","post_excerpt":"Summary Analyzing human motion with high autonomy\u00a0requires advanced capabilities in sensing, communication, energy management and AI. Wearable systems help us go beyond external cameras enabling motion analysis in the wild. However, such systems are still semi-autonomous. This is because, they require careful sensor calibration and precise positioning on the body over the course of motion.\u00a0Moreover, these systems are plagued with bulky batteries and issues of time synchronization, sensor noise and drift.\u00a0All of these restrictions hinder…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/430830"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/346982"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/346982\/revisions"}],"predecessor-version":[{"id":454404,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/346982\/revisions\/454404"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=346982"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=346982"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=346982"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=346982"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=346982"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=346982"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=346982"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=346982"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=346982"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=346982"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=346982"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=346982"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=346982"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=346982"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=346982"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=346982"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}