{"id":352238,"date":"2017-01-12T20:44:25","date_gmt":"2017-01-13T04:44:25","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=352238"},"modified":"2018-10-16T20:16:54","modified_gmt":"2018-10-17T03:16:54","slug":"double-nothing-multiplicative-incentive-mechanisms-crowdsourcing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/double-nothing-multiplicative-incentive-mechanisms-crowdsourcing\/","title":{"rendered":"Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing"},"content":{"rendered":"

Crowdsourcing has gained immense popularity in machine learning applications for obtaining large amounts of labeled data. Crowdsourcing is cheap and fast, but suffers from the problem of low-quality data. To address this fundamental challenge in crowdsourcing, we propose a simple payment mechanism to incentivize workers to answer only the questions that they are sure of and skip the rest. We show that surprisingly, under a mild and natural no-free-lunch requirement, this mechanism is the one and only incentive-compatible payment mechanism possible. We also show that among all possible incentive-compatible mechanisms (that may or may not satisfy no-free-lunch), our mechanism makes the smallest possible payment to spammers. Interestingly, this unique mechanism takes a multiplicative form. The simplicity of the mechanism is an added benefit. In preliminary experiments involving over several hundred workers, we observe a significant reduction in the error rates under our unique mechanism for the same or lower monetary expenditure.<\/p>\n","protected":false},"excerpt":{"rendered":"

Crowdsourcing has gained immense popularity in machine learning applications for obtaining large amounts of labeled data. Crowdsourcing is cheap and fast, but suffers from the problem of low-quality data. To address this fundamental challenge in crowdsourcing, we propose a simple payment mechanism to incentivize workers to answer only the questions that they are sure of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-352238","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Advances in Neural Information Processing Systems 28 (NIPS 2015)","msr_affiliation":"","msr_published_date":"2015-12-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"https:\/\/papers.nips.cc\/paper\/5677-double-or-nothing-multiplicative-incentive-mechanisms-for-crowdsourcing","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"https:\/\/papers.nips.cc\/paper\/5677-double-or-nothing-multiplicative-incentive-mechanisms-for-crowdsourcing","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/papers.nips.cc\/paper\/5677-double-or-nothing-multiplicative-incentive-mechanisms-for-crowdsourcing"}],"msr-author-ordering":[{"type":"text","value":"Nihar Bhadresh Shah","user_id":0,"rest_url":false},{"type":"user_nicename","value":"denzho","user_id":31609,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=denzho"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171217],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171217,"post_title":"Algorithmic Crowdsourcing","post_name":"algorithmic-crowdsourcing","post_type":"msr-project","post_date":"2013-09-26 15:40:30","post_modified":"2019-08-19 14:35:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/algorithmic-crowdsourcing\/","post_excerpt":"To build a machine learning based intelligent system, we often need to collect training labels and feed them into the system. A useful lesson in machine learning is that \"more data beats a clever algorithm\". In the current days, through a commercial crowdsourcing platform, we can easily collect a large amount of labels at a cost of pennies per label. However, the labels obtained from crowdsourcing may be highly noisy. Training a machine learning model…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171217"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/352238"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/352238\/revisions"}],"predecessor-version":[{"id":525749,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/352238\/revisions\/525749"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=352238"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=352238"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=352238"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=352238"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=352238"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=352238"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=352238"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=352238"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=352238"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=352238"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=352238"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=352238"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=352238"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=352238"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=352238"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=352238"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}