{"id":363011,"date":"2017-02-09T15:41:50","date_gmt":"2017-02-09T23:41:50","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=363011"},"modified":"2018-10-16T22:32:03","modified_gmt":"2018-10-17T05:32:03","slug":"knowledge-grounded-neural-conversation-model","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/knowledge-grounded-neural-conversation-model\/","title":{"rendered":"A Knowledge-Grounded Neural Conversation Model"},"content":{"rendered":"
Neural network models are capable of generating extremely natural sounding conversational interactions. However, these models have been mostly applied to casual scenarios (e.g., as “chatbots”) and have yet to demonstrate they can serve in more useful conversational applications. This paper presents a novel, fully data-driven, and knowledge-grounded neural conversation model aimed at producing more contentful responses. We generalize the widely-used Sequence-to-Sequence (seq2seq) approach by conditioning responses on both conversation history and external “facts”, allowing the model to be versatile and applicable in an open-domain setting. Our approach yields significant improvements over a competitive seq2seq baseline. Human judges found that our outputs are significantly more informative.<\/p>\n","protected":false},"excerpt":{"rendered":"
Neural network models are capable of generating extremely natural sounding conversational interactions. However, these models have been mostly applied to casual scenarios (e.g., as “chatbots”) and have yet to demonstrate they can serve in more useful conversational applications. This paper presents a novel, fully data-driven, and knowledge-grounded neural conversation model aimed at producing more contentful […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-363011","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"AAAI","msr_affiliation":"","msr_published_date":"2018-02-02","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"447039","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"A_Knowledge_Grounded_Neural_Conversation_Model","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/02\/A_Knowledge_Grounded_Neural_Conversation_Model.pdf","id":447039,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Marjan Ghazvininejad","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chrisbkt","user_id":31423,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisbkt"},{"type":"user_nicename","value":"minchang","user_id":32931,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=minchang"},{"type":"user_nicename","value":"billdol","user_id":31229,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=billdol"},{"type":"user_nicename","value":"jfgao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jfgao"},{"type":"user_nicename","value":"scottyih","user_id":33556,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=scottyih"},{"type":"user_nicename","value":"mgalley","user_id":32887,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mgalley"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144736],"msr_project":[393245,171447,171065],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":393245,"post_title":"Conversational Intelligence","post_name":"conversational-intelligence","post_type":"msr-project","post_date":"2017-07-05 10:01:45","post_modified":"2017-11-15 13:39:25","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/conversational-intelligence\/","post_excerpt":"Intelligent agents that can handle human language play a growing role in personalized, ubiquitous computing and the everyday use of devices. Agents need to be able to communicate and collaborate with humans in ways that are seamless and natural, and to be able to learn new behaviors, concepts, and relationships as first-class operations. In other words, our devices need to be able to converse with us. In this project, Microsoft Research AI teams are interested…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/393245"}]}},{"ID":171447,"post_title":"Data-Driven Conversation","post_name":"data-driven-conversation","post_type":"msr-project","post_date":"2015-03-19 17:13:58","post_modified":"2019-08-19 10:40:23","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-driven-conversation\/","post_excerpt":"This project aims to enable people to converse with their devices. We are trying to teach devices to engage with humans using human language in ways that appear seamless and natural to humans. Our research focuses on statistical methods by which devices can learn from human-human conversational interactions and can situate responses in the verbal context and in physical or virtual environments. Natural and Engaging Agents that process human language will play a growing role…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171447"}]}},{"ID":171065,"post_title":"Recurrent Neural Networks for Language Processing","post_name":"recurrent-neural-networks-for-language-processing","post_type":"msr-project","post_date":"2012-11-23 11:45:31","post_modified":"2019-08-19 14:55:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/recurrent-neural-networks-for-language-processing\/","post_excerpt":"This project focuses on advancing the state-of-the-art in language processing with recurrent neural networks. We are currently applying these to language modeling, machine translation, speech recognition, language understanding and meaning representation. A special interest in is adding side-channels of information as input, to model phenomena which are not easily handled in other frameworks. A toolkit for doing RNN language modeling with side-information is in the associated download. Sample word vectors for use with this toolkit…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171065"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363011"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363011\/revisions"}],"predecessor-version":[{"id":447051,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363011\/revisions\/447051"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=363011"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=363011"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=363011"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=363011"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=363011"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=363011"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=363011"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=363011"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=363011"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=363011"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=363011"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=363011"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=363011"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=363011"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=363011"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=363011"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}