{"id":363185,"date":"2017-02-10T13:18:31","date_gmt":"2017-02-10T21:18:31","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=363185"},"modified":"2018-10-16T20:00:20","modified_gmt":"2018-10-17T03:00:20","slug":"multi-task-learning-speaker-role-based-neural-conversation-models","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multi-task-learning-speaker-role-based-neural-conversation-models\/","title":{"rendered":"Multi-Task Learning of Speaker-Role-Based Neural Conversation Models"},"content":{"rendered":"
Building a persona-based conversation agent is challenging owing to the lack of large amounts of speaker-specific conversation data for model training. This paper addresses the problem by proposing a multi-task learning approach to training neural conversation models that leverages both conversation data across speakers and other types of data pertaining to the speaker and speaker roles to be modeled. Experiments show that our approach leads to significant improvements over baseline model quality, generating responses that capture more precisely speakers’ traits and speaking styles. The model offers the benefits of being algorithmically simple and easy to implement, and not relying on large quantities of data representing specific individual speakers. <\/p>\n","protected":false},"excerpt":{"rendered":"
Building a persona-based conversation agent is challenging owing to the lack of large amounts of speaker-specific conversation data for model training. This paper addresses the problem by proposing a multi-task learning approach to training neural conversation models that leverages both conversation data across speakers and other types of data pertaining to the speaker and speaker […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-363185","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"IJCNLP","msr_affiliation":"","msr_published_date":"2017-11-28","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"447024","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"1710.07388","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/02\/1710.07388.pdf","id":447024,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yi Luan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chrisbkt","user_id":31423,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisbkt"},{"type":"user_nicename","value":"billdol","user_id":31229,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=billdol"},{"type":"user_nicename","value":"jfgao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jfgao"},{"type":"user_nicename","value":"mgalley","user_id":32887,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mgalley"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144736],"msr_project":[604608],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":604608,"post_title":"Microsoft Icecaps","post_name":"microsoft-icecaps","post_type":"msr-project","post_date":"2019-08-29 10:40:23","post_modified":"2019-11-05 11:51:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/microsoft-icecaps\/","post_excerpt":"With natural language processing rapidly increasing in popularity, more and more tools have become available to the public to build large systems. Some of these tools are intended for general-purpose NLP, while others focus on specific domains such as language modeling and text generation. However, few are designed to target conversational scenarios and the specific needs they entail. Microsoft Icecaps was created to offer researchers and developers an open-source toolkit with a focus on conversational…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/604608"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363185"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363185\/revisions"}],"predecessor-version":[{"id":447027,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/363185\/revisions\/447027"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=363185"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=363185"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=363185"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=363185"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=363185"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=363185"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=363185"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=363185"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=363185"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=363185"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=363185"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=363185"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=363185"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=363185"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=363185"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=363185"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}