{"id":375023,"date":"2017-03-29T12:17:01","date_gmt":"2017-03-29T19:17:01","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=375023"},"modified":"2018-10-16T21:57:42","modified_gmt":"2018-10-17T04:57:42","slug":"robustfill-neural-program-learning-noisy-io","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/robustfill-neural-program-learning-noisy-io\/","title":{"rendered":"RobustFill: Neural Program Learning under Noisy I\/O"},"content":{"rendered":"

The problem of automatically generating a computer program from some specification has been studied since the early days of AI. Recently, two competing approaches for automatic program learning have received significant attention: (1) neural program synthesis, where a neural network is conditioned on input\/output (I\/O) examples and learns to generate a program, and (2) neural program induction, where a neural network generates new outputs directly using a latent program representation.\u00a0<\/span><\/span>
Here, for the first time, we directly compare both approaches on a large-scale, real-world learning task. We additionally contrast to rule-based program synthesis, which uses hand-crafted semantics to guide the program generation. Our neural models use a modified attention RNN to allow encoding of variable-sized sets of I\/O pairs. Our best synthesis model achieves 92% accuracy on a real-world test set, compared to the 34% accuracy of the previous best neural synthesis approach. The synthesis model also outperforms a comparable induction model on this task, but we more importantly demonstrate that the strength of each approach is highly dependent on the evaluation metric and end-user application. Finally, we show that we can train our neural models to remain very robust to the type of noise expected in real-world data (e.g., typos), while a highly-engineered rule-based system fails entirely.<\/span><\/p>\n","protected":false},"excerpt":{"rendered":"

The problem of automatically generating a computer program from some specification has been studied since the early days of AI. Recently, two competing approaches for automatic program learning have received significant attention: (1) neural program synthesis, where a neural network is conditioned on input\/output (I\/O) examples and learns to generate a program, and (2) neural […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-375023","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"34th International Conference on Machine Learning (ICML 2017)","msr_affiliation":"","msr_published_date":"2017-03-27","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"375026","msr_publicationurl":"https:\/\/arxiv.org\/abs\/1703.07469","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"robustfill","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/03\/robustfill.pdf","id":375026,"label_id":0},{"type":"url","title":"https:\/\/arxiv.org\/abs\/1703.07469","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/arxiv.org\/abs\/1703.07469"}],"msr-author-ordering":[{"type":"user_nicename","value":"jdevlin","user_id":32209,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jdevlin"},{"type":"text","value":"Jonathan Uesato","user_id":0,"rest_url":false},{"type":"text","value":"Surya Bhupatiraju","user_id":0,"rest_url":false},{"type":"user_nicename","value":"risin","user_id":33413,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=risin"},{"type":"user_nicename","value":"asamir","user_id":31109,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=asamir"},{"type":"user_nicename","value":"pkohli","user_id":33269,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=pkohli"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/375023"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/375023\/revisions"}],"predecessor-version":[{"id":397292,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/375023\/revisions\/397292"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=375023"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=375023"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=375023"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=375023"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=375023"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=375023"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=375023"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=375023"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=375023"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=375023"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=375023"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=375023"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=375023"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=375023"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=375023"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=375023"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}