{"id":393341,"date":"2017-06-23T12:32:36","date_gmt":"2017-06-23T19:32:36","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=393341"},"modified":"2018-10-16T19:58:53","modified_gmt":"2018-10-17T02:58:53","slug":"intelligible-models-classi%ef%ac%81cation-regression","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/intelligible-models-classi%ef%ac%81cation-regression\/","title":{"rendered":"Intelligible Models for Classi\u00ef\u00ac\u0081cation and Regression"},"content":{"rendered":"
Complex models for regression and classi\ufb01cation have high accuracy but are unfortunately no longer interpretable by users. We study the performance of generalized additive models (GAMs), which combine single-feature models called shape functions through a linear function. Since the shape functions can be arbitrarily complex, GAMs are more accurate than simple linear models. But since they do not contain any interactions between features, they can be easily interpreted by users. We present the \ufb01rst large-scale empirical comparison of existing methodsforlearningGAMs. Ourstudyincludesexistingsplineand tree-based methods for shape functions and penalized least squares, gradient boosting, and back\ufb01tting for learning GAMs. We also present a new method based on tree ensembles with an adaptive number of leaves that consistently outperforms previous work. We complement our experimental results with a bias-variance analysis that explains how different shape models in\ufb02uence the additive model. Our experiments show that shallow bagged trees with gradient boosting distinguish itself as the best method on low- to medium-dimensional datasets.<\/p>\n
<\/p>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Complex models for regression and classi\ufb01cation have high accuracy but are unfortunately no longer interpretable by users. We study the performance of generalized additive models (GAMs), which combine single-feature models called shape functions through a linear function. Since the shape functions can be arbitrarily complex, GAMs are more accurate than simple linear models. But since […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-393341","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"KDD\u201912, Beijing, China","msr_affiliation":"","msr_published_date":"2012-08-12","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"978-1-4503-1462-6","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"393338","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"kdd2012","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/06\/kdd2012.pdf","id":393338,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yin Lou","user_id":0,"rest_url":false},{"type":"user_nicename","value":"rcaruana","user_id":33365,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rcaruana"},{"type":"user_nicename","value":"johannes","user_id":32364,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=johannes"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[393287],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":393287,"post_title":"Intelligible, Interpretable, and Transparent Machine Learning","post_name":"intelligible-interpretable-and-transparent-machine-learning","post_type":"msr-project","post_date":"2017-07-05 14:03:17","post_modified":"2023-03-21 16:54:15","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/intelligible-interpretable-and-transparent-machine-learning\/","post_excerpt":"The importance of intelligibility and transparency in machine learning Most real datasets have hidden biases. Being able to detect the impact of the bias in the data on the model, and then to repair the model, is critical if we are going to deploy machine learning in applications that affect people\u2019s health, welfare, and social opportunities. This requires models that are intelligible. In machine learning, there is often a tradeoff between accuracy and intelligibility: the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/393287"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/393341","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/393341\/revisions"}],"predecessor-version":[{"id":516215,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/393341\/revisions\/516215"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=393341"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=393341"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=393341"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=393341"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=393341"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=393341"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=393341"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=393341"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=393341"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=393341"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=393341"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=393341"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=393341"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=393341"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=393341"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=393341"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}