{"id":394934,"date":"2017-06-29T17:37:39","date_gmt":"2017-06-30T00:37:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=394934"},"modified":"2018-10-16T19:59:53","modified_gmt":"2018-10-17T02:59:53","slug":"video-captioning-transferred-semantic-attributes","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/video-captioning-transferred-semantic-attributes\/","title":{"rendered":"Video Captioning with Transferred Semantic Attributes"},"content":{"rendered":"
Automatically generating natural language descriptions of videos plays a fundamental challenge for computer vision community. Most recent progress in this problem has been achieved through employing 2-D and\/or 3-D Convolutional Neural Networks (CNNs) to encode video content and Recurrent Neural Networks (RNNs) to decode a sentence. In this paper, we present Long Short-Term Memory with Transferred Semantic Attributes (LSTM-TSA)\u2014a novel deep architecture that incorporates the transferred semantic attributes learnt from images and videos into the CNN plus RNN framework, by training them in an end-to-end manner. The design of LSTM-TSA is highly inspired by the facts that 1) semantic attributes play a significant contribution to captioning, and 2) images and videos carry complementary semantics and thus can reinforce each other for captioning. To boost video captioning, we propose a novel transfer unit to model the mutually correlated attributes learnt from images and videos. Extensive experiments are conducted on three public datasets, i.e., MSVD, M-VAD and MPIIMD. Our proposed LSTM-TSA achieves to-date the best published performance in sentence generation on MSVD: 52.8% and 74.0% in terms of BLEU@4 and CIDEr-D. Superior results are also reported on M-VAD and MPII-MD when compared to state-of-the-art methods.<\/p>\n","protected":false},"excerpt":{"rendered":"
Automatically generating natural language descriptions of videos plays a fundamental challenge for computer vision community. Most recent progress in this problem has been achieved through employing 2-D and\/or 3-D Convolutional Neural Networks (CNNs) to encode video content and Recurrent Neural Networks (RNNs) to decode a sentence. In this paper, we present Long Short-Term Memory with […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-394934","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","msr_affiliation":"","msr_published_date":"2017-07-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"394940","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Video Captioning with Transferred Semantic Attributes","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/06\/Video-Captioning-with-Transferred-Semantic-Attributes.pdf","id":394940,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yingwei Pan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"tiyao","user_id":34069,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tiyao"},{"type":"text","value":"Houqiang Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"tmei","user_id":34188,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tmei"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144916],"msr_project":[212087],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":212087,"post_title":"Vision and Language","post_name":"video-and-language","post_type":"msr-project","post_date":"2016-01-14 20:03:50","post_modified":"2021-05-13 02:20:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/video-and-language\/","post_excerpt":"Automatically describing visual content with natural language is a fundamental challenge of computer vision and multimedia. Sequence learning (e.g., Recurrent Neural Networks), attention mechanism, memory networks,\u00a0etc.,\u00a0have attracted increasing attention on visual interpretation. In this project, we are focusing on the following topics related to the emerging topic of \"vision and language\": Image and video captioning, including MSR-VTT video to language grand challenge and datasets (http:\/\/ms-multimedia-challenge.com\/). Image and video commenting (conversation) Visual storytelling (e.g., generation of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212087"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394934"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394934\/revisions"}],"predecessor-version":[{"id":394937,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394934\/revisions\/394937"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=394934"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=394934"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=394934"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=394934"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=394934"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=394934"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=394934"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=394934"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=394934"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=394934"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=394934"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=394934"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=394934"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=394934"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=394934"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=394934"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}