{"id":394943,"date":"2017-06-29T17:42:09","date_gmt":"2017-06-30T00:42:09","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=394943"},"modified":"2018-10-16T19:59:55","modified_gmt":"2018-10-17T02:59:55","slug":"multi-level-attention-networks-visual-question-answering","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multi-level-attention-networks-visual-question-answering\/","title":{"rendered":"Multi-level Attention Networks for Visual Question Answering"},"content":{"rendered":"
Inspired by the recent success of text-based question answering, visual question answering (VQA) is proposed to automatically answer natural language questions with the reference to a given image. Compared with text-based QA, VQA is more challenging because the reasoning process on visual domain needs both effective semantic embedding and fine-grained visual understanding. Existing approaches predominantly infer answers from the abstract low-level visual features, while neglecting the modeling of high-level image semantics and the rich spatial context of regions. To solve the challenges, we propose a multi-level attention network for visual question answering that can simultaneously reduce the semantic gap by semantic attention and benefit fine-grained spatial inference by visual attention. First, we generate semantic concepts from high-level semantics in convolutional neural networks (CNN) and select those question-related concepts as semantic attention. Second, we encode region-based middle-level outputs from CNN into spatially-embedded representation by a bidirectional recurrent neural network, and further pinpoint the answer-related regions by multiple layer perceptron as visual attention. Third, we jointly optimize semantic attention, visual attention and question embedding by a softmax classifier to infer the final answer. Extensive experiments show the proposed approach outperforms the-state-of-arts on two challenging VQA datasets.<\/p>\n","protected":false},"excerpt":{"rendered":"
Inspired by the recent success of text-based question answering, visual question answering (VQA) is proposed to automatically answer natural language questions with the reference to a given image. Compared with text-based QA, VQA is more challenging because the reasoning process on visual domain needs both effective semantic embedding and fine-grained visual understanding. Existing approaches predominantly […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-394943","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","msr_affiliation":"","msr_published_date":"2017-07-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"394946","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Multi-level Attention Networks for Visual Question Answering","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/06\/Multi-level-Attention-Networks-for-Visual-Question-Answering.pdf","id":394946,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Dongfei Yu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"jianf","user_id":32260,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jianf"},{"type":"text","value":"Yong Rui","user_id":0,"rest_url":false},{"type":"user_nicename","value":"tmei","user_id":34188,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tmei"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144916],"msr_project":[212087],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":212087,"post_title":"Vision and Language","post_name":"video-and-language","post_type":"msr-project","post_date":"2016-01-14 20:03:50","post_modified":"2021-05-13 02:20:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/video-and-language\/","post_excerpt":"Automatically describing visual content with natural language is a fundamental challenge of computer vision and multimedia. Sequence learning (e.g., Recurrent Neural Networks), attention mechanism, memory networks,\u00a0etc.,\u00a0have attracted increasing attention on visual interpretation. In this project, we are focusing on the following topics related to the emerging topic of \"vision and language\": Image and video captioning, including MSR-VTT video to language grand challenge and datasets (http:\/\/ms-multimedia-challenge.com\/). Image and video commenting (conversation) Visual storytelling (e.g., generation of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212087"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394943"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394943\/revisions"}],"predecessor-version":[{"id":394949,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/394943\/revisions\/394949"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=394943"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=394943"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=394943"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=394943"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=394943"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=394943"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=394943"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=394943"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=394943"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=394943"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=394943"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=394943"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=394943"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=394943"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=394943"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=394943"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}