{"id":396356,"date":"2019-01-17T09:56:05","date_gmt":"2019-01-17T17:56:05","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=396356"},"modified":"2019-01-17T09:56:05","modified_gmt":"2019-01-17T17:56:05","slug":"computing-gcds-polynomials-algebraic-number-fields","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/computing-gcds-polynomials-algebraic-number-fields\/","title":{"rendered":"Computing GCDs of Polynomials over Algebraic Number Fields"},"content":{"rendered":"
\n
\n
\n

Modular methods for computing the gcd of two univariate polynomials over an algebraic number field require\u00a0a priori<\/em>\u00a0knowledge about the denominators of the rational numbers in the representation of the gcd. A multiplicative bound for these denominators is derived without assuming that the number generating the field is an algebraic integer. Consequently, the gcd algorithm of Langemyr and McCallum [J. Symbolic Computation<\/em>8<\/strong>, 429 – 448, 1989] can now be applied directly to polynomials that are not necessarily represented in terms of an algebraic integer. Worst-case analyses and experiments with an implementation show that by avoiding a conversion of representation the reduction in computing time can be significant. A further improvement is achieved by using an algorithm for reconstructing a rational number from its modular residue so that the denominator bound need not be explicitly computed. Experiments and analyses suggest that this is a good practical alternative.<\/p>\n<\/div>\n<\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Modular methods for computing the gcd of two univariate polynomials over an algebraic number field require\u00a0a priori\u00a0knowledge about the denominators of the rational numbers in the representation of the gcd. A multiplicative bound for these denominators is derived without assuming that the number generating the field is an algebraic integer. Consequently, the gcd algorithm of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13546],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-396356","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"Academic Press","msr_edition":"","msr_affiliation":"","msr_published_date":"1995-09-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"299-313","msr_chapter":"","msr_isbn":"","msr_journal":"Journal of Symbolic Computation, Issue 3","msr_volume":"20","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"396359","msr_publicationurl":"","msr_doi":"https:\/\/doi.org\/10.1006\https://www.microsoft.com/jsco.1995.1052","msr_publication_uploader":[{"type":"file","title":"1-s2.0-S0747717185710528-main","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/07\/1-s2.0-S0747717185710528-main.pdf","id":396359,"label_id":0},{"type":"doi","title":"https:\/\/doi.org\/10.1006\https://www.microsoft.com/jsco.1995.1052","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"markenc","user_id":32814,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=markenc"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[493619],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/396356"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/396356\/revisions"}],"predecessor-version":[{"id":562446,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/396356\/revisions\/562446"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=396356"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=396356"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=396356"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=396356"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=396356"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=396356"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=396356"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=396356"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=396356"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=396356"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=396356"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=396356"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=396356"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=396356"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=396356"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=396356"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}