{"id":422313,"date":"2017-08-29T23:32:27","date_gmt":"2017-08-30T06:32:27","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=422313"},"modified":"2018-10-16T22:33:06","modified_gmt":"2018-10-17T05:33:06","slug":"design-implementation-wireless-video-surveillance-system","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/design-implementation-wireless-video-surveillance-system\/","title":{"rendered":"The Design and Implementation of a Wireless Video Surveillance System"},"content":{"rendered":"

Internet-enabled cameras pervade daily life, generating a huge amount of data, but most of the video they generate is transmitted over wires and analyzed of\ufb02ine with a human in the loop. The ubiquity of cameras limits the amount of video that can be sent to the cloud, especially on wireless networks where capacity is at a premium. In this paper, we present Vigil, a real-time distributed wireless surveillance system that leverages edge computing to support real-time tracking and surveillance in enterprise campuses, retail stores, and across smart cities. Vigil intelligently partitions video processing between edge computing nodes co-located with cameras and the cloud to save wireless capacity, which can then be dedicated to Wi-Fi hotspots, offsetting their cost. Novel video frame prioritization and traf\ufb01c scheduling algorithms further optimize Vigil\u2019s bandwidth utilization. We have deployed Vigil across three sites in both whitespace and Wi-Fi networks. Depending on the level of activity in the scene, experimental results show that Vigil allows a video surveillance system to support a geographical area of coverage between \ufb01ve and 200 times greater than an approach that simply streams video over the wireless network. For a \ufb01xed region of coverage and bandwidth, Vigil outperforms the default equal throughput allocation strategy of Wi-Fi by delivering up to 25% more objects relevant to a user\u2019s query.<\/p>\n

<\/div>\n","protected":false},"excerpt":{"rendered":"

Internet-enabled cameras pervade daily life, generating a huge amount of data, but most of the video they generate is transmitted over wires and analyzed of\ufb02ine with a human in the loop. The ubiquity of cameras limits the amount of video that can be sent to the cloud, especially on wireless networks where capacity is at […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-422313","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"MobiCom '15","msr_affiliation":"","msr_published_date":"2015-09-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"978-1-4503-3619-2\/15\/09","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"422316","msr_publicationurl":"","msr_doi":"10.1145\/2789168.2790123","msr_publication_uploader":[{"type":"file","title":"Bahl-MobiCom-2015","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2017\/08\/Bahl-MobiCom-2015.pdf","id":422316,"label_id":0},{"type":"doi","title":"10.1145\/2789168.2790123","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Tan Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Aakanksha Chowdhery","user_id":30768,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aakanksha Chowdhery"},{"type":"user_nicename","value":"Victor Bahl","user_id":31167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Victor Bahl"},{"type":"text","value":"Kyle Jamieson","user_id":0,"rest_url":false},{"type":"text","value":"Suman Banerjee","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144899],"msr_project":[382664,212082],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":382664,"post_title":"Microsoft Rocket for Live Video Analytics","post_name":"live-video-analytics","post_type":"msr-project","post_date":"2017-05-15 08:28:48","post_modified":"2020-11-22 08:59:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/live-video-analytics\/","post_excerpt":"Project Rocket's goal is to democratize video analytics: build a system for real-time, low-cost, accurate analysis of live videos. This system will work across a geo-distributed hierarchy of intelligent edges and large clouds, with the ultimate goal of making it easy and affordable for anyone with a camera stream to benefit from video analytics.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/382664"}]}},{"ID":212082,"post_title":"Edge Computing","post_name":"edge-computing","post_type":"msr-project","post_date":"2020-02-23 16:44:03","post_modified":"2020-11-12 19:40:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/edge-computing\/","post_excerpt":"Industries ranging from manufacturing to healthcare are eager to develop real-time control systems that use machine learning and artificial intelligence to improve efficiencies and reduce cost. We are exploring this new computing paradigm by identifying and addressing emerging technology and business model challenges.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212082"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/422313"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/422313\/revisions"}],"predecessor-version":[{"id":422319,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/422313\/revisions\/422319"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=422313"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=422313"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=422313"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=422313"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=422313"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=422313"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=422313"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=422313"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=422313"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=422313"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=422313"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=422313"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=422313"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=422313"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=422313"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=422313"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}