{"id":438540,"date":"2017-12-03T12:59:11","date_gmt":"2017-12-03T20:59:11","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=438540"},"modified":"2020-10-26T14:24:24","modified_gmt":"2020-10-26T21:24:24","slug":"identifying-outlier-arms-in-multi-armed-bandit-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/identifying-outlier-arms-in-multi-armed-bandit-2\/","title":{"rendered":"Identifying Outlier Arms in Multi-Armed Bandit"},"content":{"rendered":"
We study a novel problem lying at the intersection of two areas: multi-armed bandit\u00a0and outlier detection. Multi-armed bandit is a useful tool to model the process\u00a0of incrementally collecting data for multiple objects in a decision space. Outlier\u00a0detection is a powerful method to narrow down the attention to a few objects after\u00a0the data for them are collected. However, no one has studied how to detect outlier\u00a0objects while incrementally collecting data for them, which is necessary when data\u00a0collection is expensive. We formalize this problem as identifying outlier arms in a\u00a0multi-armed bandit. We propose two sampling strategies with theoretical guarantee,\u00a0and analyze their sampling efficiency. Our experimental results on both synthetic\u00a0and real data show that our solution saves 70-99% of data collection cost from\u00a0baseline while having nearly perfect accuracy.<\/p>\n","protected":false},"excerpt":{"rendered":"
We study a novel problem lying at the intersection of two areas: multi-armed bandit\u00a0and outlier detection. Multi-armed bandit is a useful tool to model the process\u00a0of incrementally collecting data for multiple objects in a decision space. Outlier\u00a0detection is a powerful method to narrow down the attention to a few objects after\u00a0the data for them are […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-438540","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-12-3","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"466338","msr_publicationurl":"https:\/\/papers.nips.cc\/paper\/7105-identifying-outlier-arms-in-multi-armed-bandit","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2017\/12\/NIPS2017outlierarm.pdf","id":"466338","title":"NIPS2017outlierarm","label_id":"243103","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/papers.nips.cc\/paper\/7105-identifying-outlier-arms-in-multi-armed-bandit","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"https:\/\/papers.nips.cc\/paper\/7105-identifying-outlier-arms-in-multi-armed-bandit"}],"msr-author-ordering":[{"type":"text","value":"Honglei Zhuang","user_id":0,"rest_url":false},{"type":"edited_text","value":"Chi Wang","user_id":31406,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chi Wang"},{"type":"text","value":"Yifan Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[425610],"msr_group":[],"msr_project":[700999],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":700999,"post_title":"Sublinear Approximation for Large-scale Data Science","post_name":"sublinear-approximation-for-large-scale-data-science","post_type":"msr-project","post_date":"2020-10-24 11:50:50","post_modified":"2020-10-24 12:11:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sublinear-approximation-for-large-scale-data-science\/","post_excerpt":"One challenge in large scale data science is that even linear algorithms can result in large data processing cost and long latency, which limit the interactivity of the system and the productivity of data scientists. This project has an ambitious goal of enabling data science with sublinear complexity, such that the cost grows slowly or independently with the data size. We explore approximation methods for time-consuming tasks in data analytics and machine learning. Our methods…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/700999"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438540"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438540\/revisions"}],"predecessor-version":[{"id":549225,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/438540\/revisions\/549225"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=438540"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=438540"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=438540"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=438540"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=438540"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=438540"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=438540"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=438540"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=438540"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=438540"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=438540"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=438540"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=438540"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=438540"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=438540"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=438540"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}